The La protein is an essential RNA-binding protein implicated in different aspects of RNA metabolism. Herein, we report that small interfering (siRNA)-mediated La depletion reduces cell proliferation of different cell lines concomitant with a reduction in cyclin D1 (CCND1) protein. To exclude off-target effects we demonstrate that exogenous La expression in La-depleted cells restores cell proliferation and CCND1 protein levels. In contrast, proliferation of immortalized CCND1 knockout cells is not affected by La depletion, supporting a functional coherence between La, CCND1 and proliferation. Furthermore, we document by reversible in vivo crosslinking and ribonucleoprotein (RNP) immunoprecipitation an association of the La protein with CCND1 messengerRNA and that CCND1 internal ribosome entry site (IRES)-dependent translation is modulated by La protein level within the cell. In addition, we show elevated La protein expression in cervical cancer tissue and its correlation with aberrant CCND1 protein levels in cervical tumor tissue lysates. In conclusion, this study establishes a role of La in cell proliferation and CCND1 expression and demonstrates for the first time an overexpression of the RNA-binding protein La in solid tumors.
The cellular function of the cancer-associated RNA-binding protein La has been linked to translation of viral and cellular mRNAs. Recently, we have shown that the human La protein stimulates IRES-mediated translation of the cooperative oncogene CCND1 in cervical cancer cells. However, there is little known about the underlying molecular mechanism by which La stimulates CCND1 IRES-mediated translation, and we propose that its RNA chaperone activity is required. Herein, we show that La binds close to the CCND1 start codon and demonstrate that La's RNA chaperone activity can change the folding of its binding site. We map the RNA chaperone domain (RCD) within the C-terminal region of La in close proximity to a novel AKT phosphorylation site (T389). Phosphorylation at T389 by AKT-1 strongly impairs its RNA chaperone activity. Furthermore, we demonstrate that the RCD as well as T389 is required to stimulate CCND1 IRES-mediated translation in cells. In summary, we provide a model whereby a novel interplay between RNA-binding, RNA chaperoning and AKT phosphorylation of La protein regulates CCND1 IRES-mediated translation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.