The healthcare system is in crisis due to challenges including escalating costs, the inconsistent provision of care, an aging population, and high burden of chronic disease related to health behaviors. Mitigating this crisis will require a major transformation of healthcare to be proactive, preventive, patient-centered, and evidence-based with a focus on improving quality-of-life. Information technology, networking, and biomedical engineering are likely to be essential in making this transformation possible with the help of advances, such as sensor technology, mobile computing, machine learning, etc. This paper has three themes: 1) motivation for a transformation of healthcare; 2) description of how information technology and engineering can support this transformation with the help of computational models; and 3) a technical overview of several research areas that illustrate the need for mathematical modeling approaches, ranging from sparse sampling to behavioral phenotyping and early detection. A key tenet of this paper concerns complementing prior work on patient-specific modeling and simulation by modeling neuropsychological, behavioral, and social phenomena. The resulting models, in combination with frequent or continuous measurements, are likely to be key components of health interventions to enhance health and wellbeing and the provision of healthcare.
Background Electronic clinical quality measures (eCQMs) seek to quantify the adherence of health care to evidence-based standards. This requires a high level of consistency to reduce the effort of data collection and ensure comparisons are valid. Yet, there is considerable variability in local data capture, in the use of data standards and in implemented documentation processes, so organizations struggle to implement quality measures and extract data reliably for comparison across patients, providers, and systems. Objective In this paper, we discuss opportunities for harmonization within and across eCQMs; specifically, at the level of the measure concept, the logical clauses or phrases, the data elements, and the codes and value sets. Methods The authors, experts in measure development, quality assurance, standards and implementation, reviewed measure structure and content to describe the state of the art for measure analysis and harmonization. Our review resulted in the identification of four measure component levels for harmonization. We provide examples for harmonization of each of the four measure components based on experience with current quality measurement programs including the Centers for Medicare and Medicaid Services eCQM programs. Results In general, there are significant issues with lack of harmonization across measure concepts, logical phrases, and data elements. This magnifies implementation problems, confuses users, and requires more elaborate data mapping and maintenance. Conclusion Comparisons using semantically equivalent data are needed to accurately measure performance and reduce workflow interruptions with the aim of reducing evidence-based care gaps. It comes as no surprise that electronic health record designed for purposes other than quality improvement and used within a fragmented care delivery system would benefit greatly from common data representation, measure harmony, and consistency. We suggest that by enabling measure authors and implementers to deliver consistent electronic quality measure content in four key areas; the industry can improve quality measurement.
Objective During the COVID-19 pandemic, federally qualified health centers rapidly mobilized to provide SARS-CoV-2 testing, COVID-19 care, and vaccination to populations at increased risk for COVID-19 morbidity and mortality. We describe the development of a reusable public health data analytics system for reuse of clinical data to evaluate the health burden, disparities, and impact of COVID-19 on populations served by health centers. Materials and Methods The Multi-State Data Strategy engaged project partners to assess public health readiness and COVID-19 data challenges. An infrastructure for data capture and sharing procedures between health centers and public health agencies was developed to support existing capabilities and data capacities to respond to the pandemic. Results Between August 2020 - March 2021, project partners evaluated their data capture and sharing capabilities and reported challenges and preliminary data. Major interoperability challenges included poorly aligned federal, state, and local reporting requirements, lack of unique patient identifiers, lack of access to pharmacy, claims and laboratory data, missing data, and proprietary data standards and extraction methods. Discussion Efforts to access and align project partners’ existing health systems data infrastructure in the context of the pandemic highlighted complex interoperability challenges. These challenges remain significant barriers to real-time data analytics and efforts to improve health outcomes and mitigate inequities through data-driven responses. Conclusion The reusable public health data analytics system created in the Multi-State Data Strategy can be adapted and scaled for other health center networks to facilitate data aggregation and dashboards for public health, organizational planning and quality improvement and can inform local, state, and national COVID-19 response efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.