Memory formation and reinstatement are thought to lock to the hippocampal theta rhythm, predicting that encoding and retrieval processes appear rhythmic themselves. Here, we show that rhythmicity can be observed in behavioral responses from memory tasks, where participants indicate, using button presses, the timing of encoding and recall of cue-object associative memories. We find no evidence for rhythmicity in button presses for visual tasks using the same stimuli, or for questions about already retrieved objects. The oscillations for correctly remembered trials center in the slow theta frequency range (1-5 Hz). Using intracranial EEG recordings, we show that the memory task induces temporally extended phase consistency in hippocampal local field potentials at slow theta frequencies, but significantly more for remembered than forgotten trials, providing a potential mechanistic underpinning for the theta oscillations found in behavioral responses.
Memories are thought to undergo an episodic-to-semantic transformation in the course of their consolidation. We here test if repeated recall induces a similar semanticisation, and if the resulting qualitative changes in memories can be measured using simple feature-specific reaction time probes. Participants studied associations between verbs and object images, and then repeatedly recalled the objects when cued with the verb, immediately and after a two-day delay. Reaction times during immediate recall demonstrate that conceptual features are accessed faster than perceptual features. Consistent with a semanticisation process, this perceptual-conceptual gap significantly increases across the delay. A significantly smaller perceptual-conceptual gap is found in the delayed recall data of a control group who repeatedly studied the verb-object pairings on the first day, instead of actively recalling them. Our findings suggest that wake recall and offline consolidation interact to transform memories over time, strengthening meaningful semantic information over perceptual detail.
Memories are thought to undergo an episodic-to-semantic transformation in the course of their consolidation. We here tested if repeated recall induces a similar semanticization, and if the resulting qualitative changes in memories can be measured using simple feature-specific reaction time probes. Participants studied associations between verbs and object images, and then repeatedly recalled the objects when cued with the verb, immediately and after a two-day delay. Reaction times during immediate recall demonstrated that conceptual features were accessed faster than perceptual features. Consistent with a semanticization process, this perceptual-conceptual gap significantly increased across the delay. A significantly smaller perceptual-conceptual gap was found in the delayed recall data of a control group who repeatedly studied the verb-object pairings on the first day, instead of actively recalling them. Our findings suggest that wake recall and offline consolidation interact to transform memories over time, strengthening meaningful semantic information over perceptual detail.
The hippocampus and dorsal striatum are both associated with temporal processing, but they are thought to play distinct roles. The hippocampus has been reported to contribute to storing temporal structure of events in memory, whereas the striatum contributes to temporal motor preparation and reward anticipation. Here, we asked whether the striatum cooperates with the hippocampus in processing the temporal context of memorized visual associations. In our task, participants were trained to implicitly form temporal expectations for one of two possible time intervals associated to specific cue‐target associations, and subsequently were scanned using ultra‐high‐field 7T functional magnetic resonance imaging. During scanning, learned temporal expectations could be violated when the pairs were presented at either the associated or not‐associated time intervals. When temporal expectations were met during testing trials, activity in left and right hippocampal subfields and right putamen decreased, compared to when temporal expectations were not met. Further, psycho‐physiological interactions showed that functional connectivity between left hippocampal subfields and caudate decreased when temporal expectations were not met. Our results indicate that the hippocampus and striatum cooperate to process implicit temporal expectation from mnemonic associations. Our findings provide further support for a hippocampal‐striatal network in temporal associative processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.