Forests provide a wide range of provisioning, regulating and cultural services of great value to societies across the Mediterranean basin. In this study, we reviewed the scientific literature of the last 30 years to quantify the magnitude of projected changes in ecosystem services provision by Mediterranean forests under IPCC climate change scenarios. We classified the scenarios according to the temperature threshold of 2℃ set by the Paris Agreement (below or above). The review of 78 studies shows that climate change will lead to a general reduction in the provision of regulating services (e.g. carbon storage, regulation of freshwater quantity and quality) and a general increase in the number of fires, burnt areas and generally, an increase in climate‐related forest hazards (median + 62% by 2100). Studies using scenarios above the 2℃ threshold projected significantly more negative changes in regulating services than studies using scenarios below this threshold. Main projected trend changes on material services (e.g. wood products), were less clear and depended on (i) whether or not the studies considered the interaction between the rise in temperatures and other drivers (e.g. forest management, CO2 fertilization) and (ii) differences in productivity responses across the tree species evaluated. Overall, the reviewed studies projected significant reductions in range extent and habitat suitability for the most drought‐sensitive forest species (e.g. −88% Fagus sylvatica), while the amount of habitat available for more drought‐tolerant species will remain stable or increase; however, the magnitude of projected change for these more xeric species was limited when high‐end extreme climatic scenarios were considered (above Paris Agreement). Our review highlights the benefits that climate change mitigation (to keep global mean temperature increase <2℃) can bring in terms of service provision and conservation of Mediterranean forests.
Small mammals are commonly surveyed using live trapping but the influence of weather conditions on trap success is largely unknown. This information is required to design and implement more effective field surveys and monitoring. We tested the influence of weather and moon phase on capture rates of small mammals in the Murray Mallee region of semi-arid Australia. We used extensive pitfall trapping data collected at 267 sites, totalling 54492 trap-nights. We built regression models to explore the relationship between the capture rates of five species and daily meteorological conditions, and across families of mammals, including dasyurids, burramyids and rodents. A relationship common to several taxa was the positive influence of high winds (>20km h−1) on capture rates. We also identified differences between taxa, with warmer overnight temperatures increasing capture rates of mallee ningaui but decreasing those of Bolam’s mouse. This makes it difficult to determine a single set of ‘optimal’ meteorological conditions for surveying the entire community but points to conditions favourable to individual species and groups. We recommend that surveys undertaken in warmer months encompass a variety of meteorological conditions to increase capture rates and provide a representative sample of the small mammal community present in a landscape.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.