Many species expanded their geographic ranges from core ''refugium'' populations when the global climate warmed after the Pleistocene. The bottlenecks that occur during such range expansions diminish genetic variation in marginal populations, rendering them less responsive to selection. Here, we show that range expansion also strongly depletes inbreeding depression. We compared inbreeding depression among 20 populations across the expanded range of a common European plant, and found that marginal populations had greatly reduced inbreeding depression. Similar patterns were also revealed by multilocus computer simulations. Low inbreeding depression is predicted to ease conditions for the evolution of self-fertilization, and selfing is known to be particularly frequent in marginal populations. Therefore, our findings expose a remarkable aspect of evolution at range margins, where a history of expansion can reverse the direction of selection on the mating system, providing a parsimonious explanation for the high incidence of selfing in marginal populations.genetic bottleneck ͉ mating system ͉ phenotypic performance ͉ self fertilization ͉ range margins
Sexual dimorphism in secondary traits (differences between the sexes in characteristics others than the sexual organs) is widespread in plants (Geber et al., 1999 ; Barrett and Hough, 2013). Sex differences in ecological, morphological and physiological traits have been commonly attributed to the different costs of reproduction associated with the male and the female function (Reznick, 1985 ; Obeso, 2002) and are usually linked to trade-offs between allocation to reproduction and to other plant functions (e.g., to growth and/or defense). Such trade-offs are likely to be modified under more stressful conditions (Bazzaz and Grace, 1997). In fact, plants are continuously exposed to stressful biotic and abiotic environmental factors during all their life cycle, which usually occur simultaneously (Suzuki et al., 2014). Biotic factors include competitors, symbionts, parasites, pathogens, and herbivores. Abiotic factors include extreme temperatures, water, light and nutrient availability, heavy metals, CO2, or UV radiation. As sessile organisms, plants have developed a wide range of responses to cope with stress, ranging from escape to tolerance and avoidance (Lerner, 1999)
Males and females of dioecious plant species often show different responses to competition with individuals of the same or opposite gender, but almost no data are available on the outcome of competition with members of other species. Here, we show that male and female individuals of the wind-pollinated herb Mercurialis annua are sexually dimorphic in both their intraspecific and interspecific competitive abilities. In a controlled experiment, we found that both sexes of M. annua were negatively affected by interspecific competition, but the sensitivity of males and females depended on the identity of their competitor species, with females tending to suppress the aboveground growth of competitor species more than males. Further, we found that intrasexual and intersexual competition affected the aboveground growth of males but not that of females: only males showed a significant reduction in growth when growing with conspecific competitors (male or female). We discuss our results with reference to related studies that suggest that males and females of M. annua have different resource requirements for reproduction, which in turn affect their competitive abilities.
Sex-differential timing of investment in reproduction and differential availability and use of resources from the soil (particularly water) are factors that probably offset the costs of reproduction in the above-ground growth in males and females of H. peploides. The results suggest that the patterns of spatial segregation of the sexes observed in H. peploides may contribute to maximize each sex's growth and reproduction.
The gender of dimorphic plant species is often affected by ecophysiological variables. Differences have been interpreted as a response of the sexes to meet specific resource demands associated with reproduction. This study investigated whether sex-specific variations in ecophysiological traits in response to water availability determine the performance of each sex in different habitats, and therefore promote extreme spatial segregation of the sexes in the subdioecious plant, Honckenya peploides. Twenty-seven plants of each sex were individually potted in dune sand and assigned randomly to one of three water treatments. Well-watered plants were watered daily to field capacity, whereas plants in the moderate and high-water stress treatments received 40% and 20%, respectively, of the water given to well-watered plants. Photochemical efficiency, leaf spectral properties and components of relative growth rate (leaf area ratio and net assimilation rate) were measured. Photochemical efficiencies integrated over time were higher in male than in female plants. Water deficit decreased maximum quantum yield in female plants more rapidly than in male plants, but female plants (unlike male plants) had recovered to initial values by the end of the experiment. Maximum quantum yield in male plants was more affected by water stress than in female plants, indicating that male plants were more susceptible to photoinhibition. The two sexes did not differ in growth rate, but male plants invested a higher proportion of their biomass in leaves, had a higher leaf area per unit biomass and lower net assimilation rate relative to female plants. Female plants had a higher water content and succulence than male plants. Differences in stomatal density between the sexes depended on water availability. The results suggest that the two sexes of H. peploides have different strategies for coping with water stress. The study also provides evidence of sex differences in allocation traits. We conclude that between-sex differences in ecophysiological and allocation traits may contribute to explain habitat-related between-sex differences in performance and, therefore, the spatial segregation of the sexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.