Cell walls are highly dynamic structures that provide mechanical support for plant cells during growth, development, and adaptation to a changing environment. Thus, it is important for the plant to monitor the state of the walls and ensure their functional integrity at all times. This monitoring involves perception of physical forces at the cell wall-plasma membrane interphase. These forces are altered during cell division, morphogenesis and in response to various abiotic and biotic stresses. Mechanisms responsible for perception of physical stimuli involved in these processes have been difficult to separate from other regulatory mechanisms perceiving chemical signals like hormones, peptides or cell wall fragments. However, recently developed technologies in combination with more established genetic and biochemical approaches are beginning to open up this exciting field of study. Here we will review our current knowledge of plant cell wall integrity signaling using selected recent findings and highlight how the plasma membrane-cell wall interphase can act as venue for sensing changes in the physical forces affecting plant development and stress responses. More importantly, we discuss how these signals may be integrated with chemical signals derived from established signaling cascades to control specific adaptive responses during exposure to biotic and abiotic stresses.
Our understanding of how genotype controls phenotype is limited by the scale at which we can precisely alter the genome and assess phenotypic consequences of each perturbation. Here we describe a CRISPR/Cas9-based method for multiplexed accurate genome editing with short, trackable, integrated cellular barcodes (MAGESTIC) in S. cerevisiae. MAGESTIC uses array-synthesized guide-donor oligos for plasmid-based high-throughput editing and features genomic barcode integration to prevent plasmid barcode loss and to enable robust phenotyping. We demonstrate that editing efficiency can be increased >5-fold by recruiting donor DNA to the site of breaks using the LexA-Fkh1p fusion protein. We performed saturation editing of the essential gene SEC14 and identified amino acids critical for chemical inhibition of lipid signaling. We also constructed thousands of natural genetic variants, characterized guide mismatch tolerance at the genome-scale, and ascertained that cryptic Pol III termination elements substantially reduce guide efficacy. MAGESTIC will be broadly useful to uncover the genetic basis of phenotypes in yeast.
Allogeneic hematopoietic stem cell transplantation is an established consolidation therapy for patients with acute myeloid leukemia. However, relapse after transplantation remains a major clinical problem resulting in poor prognosis. Thus, detection of measurable ("minimal") residual disease to identify patients at high risk of relapse is essential. A feasible method to determine measurable residual disease may be digital droplet PCR (ddPCR) that allows absolute quantification with high sensitivity and specificity without the necessity of standard curves. Using ddPCR, we analyzed pre-transplant peripheral blood and bone marrow of 51 NPM1-mutated acute myeloid leukemia patients transplanted in complete remission or complete remission with incomplete recovery. Mutated NPM1 measurable residual disease-positive patients had higher cumulative incidence of relapse (P < 0.001) and shorter overall survival (P = 0.014). Restricting the analyses to patients receiving non-myeloablative conditioning, mutated NPM1 measurable residual disease positivity is associated with higher cumulative incidence of relapse (P < 0.001) and shorter overall survival (P = 0.006). Positive mutated NPM1 measurable residual disease status determined by ddPCR before allogeneic stem cell transplantation is associated with worse prognosis independent of other known prognostic markers-also for those receiving non-myeloablative conditioning. In the future, mutated NPM1 measurable residual disease status determined by ddPCR might guide treatment and improve patients' outcomes.
Ribosome profiling revealed widespread translational activity at upstream open reading frames (uORFs) and validated uORF-mediated translational control as a commonly repressive mechanism of gene expression. Translational activation of proto-oncogenes through loss-of-uORF mutations has been demonstrated, yet a systematic search for cancer-associated genetic alterations in uORFs is lacking. Here, we applied a PCR-based, multiplex identifier-tagged deep sequencing approach to screen 404 uORF translation initiation sites of 83 human tyrosine kinases and 49 other proto-oncogenes in 308 human malignancies. We identified loss-of-function uORF mutations in EPHB1 in two samples derived from breast and colon cancer, and in MAP2K6 in a sample of colon adenocarcinoma. Both mutations were associated with enhanced translation, suggesting that loss-of-uORF-mediated translational induction of the downstream main protein coding sequence may have contributed to carcinogenesis. Computational analysis of whole exome sequencing datasets of 464 colon adenocarcinomas subsequently revealed another 53 non-recurrent somatic mutations functionally deleting 22 uORF initiation and 31 uORF termination codons, respectively. These data provide evidence for somatic mutations affecting uORF initiation and termination codons in human cancer. The insufficient coverage of uORF regions in current whole exome sequencing datasets demands for future genome-wide analyses to ultimately define the contribution of uORF-mediated translational deregulation in oncogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.