A facile method, i.e., nonsolvent assisted electrospraying, is proposed to fabricate hierarchically porous microspheres. The pore size on the microsphere surface ranges from a few tens to several hundred nanometers. Thermally and nonsolvent induced phase separation as well as breath figure is responsible for the formation of the hierarchical structures with different nano-sized pores. The nonsolvent could not only induce phase separation, but also stabilize the interface between the droplet and air, which can prevent the droplet from strong deformation, and is therefore beneficial to the formation of regular and uniform microspheres. On the other hand, solvent evaporation, polymer diffusion and Coulomb fission during electrospraying influence the morphology of finally obtained products. In this paper, the influence of polymer concentration, the weight ratio between nonsolvent and polymer and the flowing rate on the morphology of the porous microsphere is carefully studied. The hierarchically porous microsphere significantly increases the surface roughness and thus the hydrophobicity, and the contact angle can reach as high as 152.2 ± 1.2°. This nonsolvent assisted electrospraying opens a new way to fabricate superhydrophobic coating materials.
ABSTRACT:The distribution of maleated styrene-hydrogenated butadiene-styrene (mSEBS) elastomer and nanoSiO 2 in nylon 6 matrix was controlled by varying the blending procedure. Nano-SiO 2 particles with different surface properties (hydrophilic versus hydrophobic) were adopted to adjust their interactions with other components. Two different structures, separate dispersion of nano-SiO 2 and elastomer particles as well as encapsulation of nano-SiO 2 fillers by the elastomer, were obtained. The structures were confirmed through scanning electron microscope (SEM) investigation. The mechanical measurement results showed that the microstructure and the interactions among the components had dramatic influences on the final mechanical properties, especially Izod fracture toughness, for the ternary nanocomposites. The nanocomposites containing hydrophilic nano-SiO 2 had better mechanical performances compared with the composites filled with hydrophobic SiO 2 when they were in the same microstructure. The nanocomposites with separate dispersion structure showed higher stiffness compared with those of encapsulation type. However, the separately dispersed nano-SiO 2 particles restricted the cavitation of elastomer phases that led to low toughening effectiveness. The difference of cavitation intensity for elastomer phase was revealed by SEM investigation on the facture surfaces for the nanocomposites with the two different microstructures.
A new approach for improving the wear performances of nylon 6 (PA6)/clay nanocomposites was examined in this study. Two hybrid nanocomposites were prepared by melt blending a thermotropic liquid crystalline polymer (TLCP) and a well-dispersed PA6/clay nanocomposite, but with and without the incorporation of maleicanhydride grafted polypropylene (MAPP) as compatibilizer. The addition of MAPP improved the compatibility between TLCP and matrix and thus enhanced the fibrillation of dispersed TLCP phase. Wear-testing results revealed that the wear resistance of the compatibilized hybrid nanocomposite could be improved effectively, as indicated by the low values of specific wear rate and frictional coefficient, especially under high-normal load (i.e., 80 N). Based on the characterization on the worn damage and the debris, it was suggested that abrasive wear was the main-damage mechanism for all the materials under investigation, except for the compatibilized hybrid nanocomposite. For this system, the wear damage was caused by a combination of abrasive and adhesive wearing because of the formation of transfer film on the counter pin surface from the wear debris. POLYM. ENG. SCI., 50:900-910, 2010. ª 2009 Society of Plastics Engineers Baoqing Zhang is currently at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.