During activation, T cells express receptors for receiving positive and negative costimulatory signals. Here we identify the B and T lymphocyte attenuator (BTLA), an immunoglobulin domain-containing glycoprotein with two immunoreceptor tyrosine-based inhibitory motifs. BTLA is not expressed by naive T cells, but it is induced during activation and remains expressed on T helper type 1 (T(H)1) but not T(H)2 cells. Crosslinking BTLA with antigen receptors induces its tyrosine phosphorylation and association with the Src homology domain 2 (SH2)-containing protein tyrosine phosphatases SHP-1 and SHP-2, and attenuates production of interleukin 2 (IL-2). BTLA-deficient T cells show increased proliferation, and BTLA-deficient mice have increased specific antibody responses and enhanced sensitivity to experimental autoimmune encephalomyelitis. B7x, a peripheral homolog of B7, is a ligand of BTLA. Thus, BTLA is a third inhibitory receptor on T lymphocytes with similarities to cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and programmed death 1 (PD-1).
Activator protein 1 (AP-1) transcription factors are dimers of Jun, Fos, MAF and activating transcription factor (ATF) family proteins characterized by basic region and leucine zipper domains1. Many AP-1 proteins contain defined transcriptional activation domains (TADs), but Batf and the closely related Batf3 (refs 2, 3) contain only a basic region and leucine zipper and have been considered inhibitors of AP-1 activity3–8. Here we show that Batf is required for the differentiation of IL-17-producing T helper (TH17) cells9. TH17 cells comprise a CD4+ T cell subset that coordinates inflammatory responses in host defense but is pathogenic in autoimmunity10–13.Batf
−/−mice have normal TH1 and TH2 differentiation, but show a defect in TH17 differentiation, and are resistant to experimental autoimmune encephalomyelitis (EAE).Batf
−/−T cells fail to induce known factors required for TH17 differentiation, such as RORγt11 and the cytokine IL-21 (refs 14–17). Neither addition of IL-21 nor overexpression of RORγt fully restores IL-17 production in Batf−/− T cells. The IL-17 promoter is Batf-responsive, and upon TH17 differentiation, Batf binds conserved intergenic elements in the IL-17A/F locus and to the IL-17, IL-21 and IL-22 (ref 18) promoters. These results demonstrate that the AP-1 protein Batf plays a critical role in TH17 differentiation.
A BSTRACT : Recently, glucose deprivation-induced oxidative stress has been shown to cause cytotoxicity, activation of signal transduction (i.e., ERK1, ERK2, JNK, and Lyn kinase), and increased expression of genes associated with malignancy (i.e., bFGF and c-Myc) in MCF-7/ADR human breast cancer cells. These results have led to the proposal that intracellular oxidation/ reduction reactions involving hydroperoxides and thiols may provide a mechanistic link between metabolism, signal transduction, and gene expression in these human tumor cells. The current study shows that several other transformed human cell types appear to be more susceptible to glucose deprivationinduced cytotoxicity and oxidative stress than untransformed human cell types. In a matched pair of normal and SV40-transformed human fibroblasts the cytotoxic process is shown to be dependent upon ambient O 2 concentration. A theoretical model to explain the results is presented and implications to unifying modern theories of cancer are discussed.
We previously observed that glucose deprivation induces cell death in multidrug-resistant human breast carcinoma cells (MCF-7/ADR). As a follow up we wished to test the hypothesis that metabolic oxidative stress was the causative process or at least the link between causative processes behind the cytotoxicity. In the studies described here, we demonstrate that mitogen-activated protein kinase (MAPK) was activated within 3 min of being in glucose-free medium and remained activated for 3 h. Glucose deprivation for 2-4 h also caused oxidative stress as evidenced by a 3-fold greater steady state concentration of oxidized glutathione and a 3-fold increase in pro-oxidant production. Glucose and glutamate treatment rapidly suppressed MAPK activation and rescued cells from cytotoxicity. Glutamate and the peroxide scavenger, pyruvate, rescued the cells from cell killing as well as suppressed pro-oxidant production. In addition the thiol antioxidant, N-acetyl-L-cysteine, rescued cells from glucose deprivation-induced cytotoxicity and suppressed MAPK activation. These results suggest that glucose deprivation-induced cytotoxicity and alterations in MAPK signal transduction are mediated by oxidative stress in MCF-7/ADR. These results also support the speculation that a common mechanism of glucose deprivation-induced cytotoxicity in mammalian cells may involve metabolic oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.