Methane is a powerful greenhouse gas, and the abrupt degassing events that recently have formed large craters on the Russian Arctic Yamal and Gydan Peninsulas have caused major concern. Here we present field data on cover sediments and evolution of a gas-emission crater discovered in the Erkuta–Yakha River valley in the southern Yamal Peninsula in June 2017. The crater is located south of other similar craters discovered over the past decade in northern West Siberia. Data were collected during a field trip to the Erkuta crater in December 2017 which included field observations and sampling of permafrost soil and ground ice from the rim of the crater. All soil and ice samples were measured for contents of methane and its homologs (ethane and propane) and carbon dioxide. The contents of carbon dioxide in some samples are notably higher than methane. The strongly negative δ13С of methane from ground ice samples (−72‰) is typical of biogenic hydrocarbons. The ratio of methane to the total amount of its homologs indicate a component of gases that have migrated from a deeper, thermogenic source. Based on obtained results, a potential formation model for Erkuta gas-emission crater is proposed, which considers the combined effect of deep-seated (deep gas migration) and shallow (oxbow lake evolution and closed talik freezing) causes. This model includes several stages from geological prerequisites to the lake formation.
Gas accumulation and pressurized unfrozen rocks under lakes (sublake taliks) subject to freezing in shallow permafrost may lead to explosive gas emissions and the formation of craters. Gas inputs into taliks may have several sources: microbially-mediated recycling of organic matter, dissociation of intrapermafrost gas hydrates, and migration of subpermafrost and deep gases through permeable zones in a deformed crust. The cryogenic concentration of gas increases the pore pressure in the freezing gas-saturated talik. The gradual pressure buildup within the confined talik causes creep (ductile) deformation of the overlying permafrost and produces a mound on the surface. As the pore pressure in the freezing talik surpasses the permafrost strength, the gas-water-soil mixture of the talik erupts explosively and a crater forms where the mound was. The critical pressure in the confined gas-saturated talik (2–2.5 MPa for methane) corresponds to the onset of gas hydrate formation. The conditions of gas accumulation and excess pressure in freezing closed taliks in shallow permafrost, which may be responsible for explosive gas emissions and the formation of craters, are described by several models.
Tropical mountain permafrost has a unique thermal regime due to ground surface exposure to strong solar radiation. The intensity of the surface offset resulting from snow cover also strongly affects the absence or presence of permafrost. Latent heat transfer and reflected solar radiation (higher albedo) that occur during the snow-covered season contribute to a positive feedback that cools the ground. Eleven ground temperature monitoring sites were established on the mountain at 2,780 to 5,820 m.a.s.l. The geothermal heat flow is locally high in the caldera of this volcano, as shown by borehole temperature data. Permafrost is located near the only glacier entirely within the caldera (Furtwängler). These threeyear continuous records of ground temperature data encompass years of high and low snow cover. Our results show that the current lower boundary of permafrost is slightly above summit altitude and relict permafrost is present due to the influence of saturated sand on latent heat transfer. Permafrost tends to be lost more rapidly during drought years. The remaining permafrost seems likely to disappear in the future. The presence of permafrost and its thermal resistance depends on the ice content of caldera sand and the duration of snow cover.
A lasting legacy of the International Polar Year (IPY) 2007–2008 was the promotion of the Permafrost Young Researchers Network (PYRN), initially an IPY outreach and education activity by the International Permafrost Association (IPA). With the momentum of IPY, PYRN developed into a thriving network that still connects young permafrost scientists, engineers, and researchers from other disciplines. This research note summarises (1) PYRN’s development since 2005 and the IPY’s role, (2) the first 2015 PYRN census and survey results, and (3) PYRN’s future plans to improve international and interdisciplinary exchange between young researchers. The review concludes that PYRN is an established network within the polar research community that has continually developed since 2005. PYRN’s successful activities were largely fostered by IPY. With >200 of the 1200 registered members active and engaged, PYRN is capitalising on the availability of social media tools and rising to meet environmental challenges while maintaining its role as a successful network honouring the legacy of IPY.
The article is devoted to the consideration of surface and deep factors that trigger the mechanisms for the preparation of explosive processes that form gas emission craters. The study object is local zones of gas-saturated soils with abnormally high gas pressure and gas craters. The main method used in this article is the bibliography review. The synthesis of the analyzed materials was carried out based on the geosystem approach. In the proposed work, an analysis was made of the main hypotheses of the formation of gas-saturated zones with increased gas pressure in frozen soils: 1) due to the comprehensive freezing of taliks (completely dependent on surface conditions; 2) due to the inflow of warm gas from underlying rocks into the surface layers (depending on deep sources); 3) due to the decomposition of gas hydrates contained in the permafrost (the reasons can be both surface and deep); 4) due to the joint interaction of the freezing talik and the associated deep gas inflow channel. Possibilities of realization of these or those hypotheses in real conditions are revealed. The relevance of the topic is due to the reassessment of the role of frozen soils as a screen that protects the atmosphere from the emission of greenhouse gases from the lithosphere. Evidence has appeared that this role of the cryolithozone is significantly weakened with an increase in temperature, while the frozen soils themselves can be a source of gas release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.