Silicone rubber (SR)-based solid-contact ion-selective electrodes (ISEs) have been prepared for the first time with an electrically conducting polymer as the solid-contact (SC) layer. The Ca(2+)- and Ag(+)-selective electrodes were based on the ionophores ETH 1001 and o-xylylenebis(N,N-diisobutyl dithiocarbamate), respectively, integrated in room temperature vulcanizing silicone rubber (RTV 3140). The SC consisted of a polyaniline nanoparticle dispersion, which was found to considerably lower the impedance of the SCISEs in comparison to the SR-based coated wire electrodes (CWE). For the CaSCISEs, the bulk membrane resistance decreased from 700 MΩ (CaCWE) to 35 MΩ. Both the Ca(2+)- and Ag(+)-selective SCISEs exhibited nanomolar detection limits with fast Nernstian responses down to 10(-8) M. The potential response of the SCISEs was not influenced by light. The selectivities of the CaSCISEs were similar and for the AgSCISE better than their plasticized PVC-based analogues. Thus, SR seems to be a viable alternative to PVC membranes in ISE applications that require low water uptake, good adhesion, and robust and fast potential responses at submicromolar sample concentrations.
A versatile approach based on nanosphere lithography is proposed to generate surface‐imprinted polymers for selective protein recognition. A layer of 750 nm diameter latex bead‐protein conjugate is deposited onto the surface of gold‐coated quartz crystals followed by the electrosynthesis of a poly(3,4‐ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) film with thicknesses on the order of the bead radius. The removal of the polymer bead‐protein conjugates, facilitated by using a cleavable protein‐nanosphere linkage is shown to result in 2D arrays of periodic complementary size cavities. Here it is demonstrated by nanogravimetric measurements that the imprinting proceeds further at molecular level and the protein (avidin) coating of the beads generates selective recognition sites for avidin on the surface of the PEDOT/PSS film. The binding capacity of such surface‐imprinted polymer films is ca. 6.5 times higher than that of films imprinted with unmodified beads. They also exhibit excellent selectivity against analogues of avidin, i.e., extravidin, streptavidin, and neutravidin, the latter being in fact undetectable. This methodology, if coupled with properly oriented conjugation of the macromolecular template to the nanoparticles, offers the possibility of site‐directed imprinting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.