Aedes aegypti is the primary urban mosquito vector of viruses causing dengue, Zika and chikungunya fevers –for which vaccines and effective pharmaceuticals are still lacking. Current strategies to suppress arbovirus outbreaks include removal of larval-breeding sites and insecticide treatment of larval and adult populations. Insecticidal control of Ae. aegypti is challenging, due to a recent rapid global increase in knockdown-resistance (kdr) to pyrethroid insecticides. Widespread, heavy use of pyrethroid space-sprays has created an immense selection pressure for kdr, which is primarily under the control of the voltage-gated sodium channel gene (vgsc). To date, eleven replacements in vgsc have been discovered, published and shown to be associated with pyrethroid resistance to varying degrees. In Mexico, F1,534C and V1,016I have co-evolved in the last 16 years across Ae. aegypti populations. Recently, a novel replacement V410L was identified in Brazil and its effect on vgsc was confirmed by electrophysiology. Herein, we screened V410L in 25 Ae. aegypti historical collections from Mexico, the first heterozygote appeared in 2002 and frequencies have increased in the last 16 years alongside V1,016I and F1,534C. Knowledge of the specific vgsc replacements and their interaction to confer resistance is essential to predict and to develop strategies for resistance management.
As part of our ongoing surveillance efforts for West Nile virus (WNV) in the Yucatan Peninsula of Mexico, 96,687 mosquitoes collected from January through December 2007 were assayed by virus isolation in mammalian cells. Three mosquito pools caused cytopathic effect. Two isolates were orthobunyaviruses (Cache Valley virus and Kairi virus) and the identity of the third infectious agent was not determined. A subset of mosquitoes was also tested by reverse transcription-polymerase chain reaction (RT-PCR) using WNV-, flavivirus-, alphavirus-, and orthobunyavirus-specific primers. A total of 7,009 Culex quinquefasciatus in 210 pools were analyzed. Flavivirus RNA was detected in 146 (70%) pools, and all PCR products were sequenced. The nucleotide sequence of one PCR product was most closely related (71-73% identity) with homologous regions of several other flaviviruses, including WNV, St. Louis encephalitis virus, and Ilheus virus. These data suggest that a novel flavivirus (tentatively named T'Ho virus) is present in Mexico. The other 145 PCR products correspond to Culex flavivirus, an insect-specific flavivirus first isolated in Japan in 2003. Culex flavivirus was isolated in mosquito cells from approximately one in four homogenates tested. The genomic sequence of one isolate was determined. Surprisingly, heterogeneous sequences were identified at the distal end of the 5' untranslated region. Disciplines Entomology | Molecular Genetics | Virology | Virus Diseases CommentsThis is an author's manuscript of an article from The American journal of tropical medicine and hygiene 80 (2008 AbstractAs part of our ongoing surveillance efforts for West Nile virus (WNV) in the Yucatan Peninsula of Mexico, 96,687 mosquitoes collected from January through December 2007 were assayed by virus isolation in mammalian cells. Three mosquito pools caused cytopathic effect. Two isolates were orthobunyaviruses (Cache Valley virus and Kairi virus) and the identity of the third infectious agent was not determined. A subset of mosquitoes was also tested by reverse transcription-polymerase chain reaction (RT-PCR) using WNV-, flavivirus-, alphavirus-, and orthobunyavirus-specific primers. A total of 7,009 Culex quinquefasciatus in 210 pools were analyzed. Flavivirus RNA was detected in 146 (70%) pools, and all PCR products were sequenced. The nucleotide sequence of one PCR product was most closely related (71-73% identity) with homologous regions of several other flaviviruses, including WNV, St. Louis encephalitis virus, and Ilheus virus. These data suggest that a novel flavivirus (tentatively named T'Ho virus) is present in Mexico. The other 145 PCR products correspond to Culex flavivirus, an insect-specific flavivirus first isolated in Japan in 2003. Culex flavivirus was isolated in mosquito cells from approximately one in four homogenates tested. The genomic sequence of one isolate was determined. Surprisingly, heterogeneous sequences were identified at the distal end of the 5′ untranslated region.
We determined abundance of Aedes aegypti mosquitoes and presence of dengue virus (DENV) in females collected from premises of laboratory-confirmed dengue patients over a 12-month period (March 2007 to February 2008) in Merida, Mexico. Backpack aspiration from 880 premises produced 1,836 females and 1,292 males indoors (predominantly from bedrooms) and 102 females and 108 males from patios/backyards. The mean weekly indoor catch rate per home peaked at 7.8 females in late August. Outdoor abundances of larvae or pupae were not predictive of female abundance inside the home. DENV-infected Ae. aegypti females were recovered from 34 premises. Collection of DENV-infected females from homes of dengue patients up to 27 days after the onset of symptoms (median, 14 days) shows the usefulness of indoor insecticide application in homes of suspected dengue patients to prevent their homes from becoming sources for dispersal of DENV by persons visiting and being bitten by infected mosquitoes.
Abstract. A population genetic analysis of Aedes aegypti was conducted among 38 collections from throughout coastal regions of Mexico. Multiple collections were made within 5 cities to examine local patterns of gene flow. Single-strand conformation polymorphism analysis was used to screen for variation in a 387-bp region of the Nicotinamide Adenine Dinucleotide Dehydrogenase subunit 4 mitochondrial gene (ND4) and 25 haplotypes were detected. Northeastern Mexico collections were genetically differentiated from and had lower genetic diversity than Yucatan and Pacific coastal collections. Yucatan and Pacific collections were genetically homogeneous. Regression analysis of geographic distances and F ST values indicated that collections were genetically isolated by distance in the Pacific and the Yucatan, but not among collections in the northeast. Free gene flow occurred among all collections within 130 km of one another in the northeast and within 180 km in the Yucatan. F ST values were never large among Pacific collections, suggesting extensive gene flow along the Pacific coast.
A total of 191,244 mosquitoes from 24 species were collected in the Yucatan Peninsula of Mexico from January to December 2008, and tested for the presence of cytopathic virus by virus isolation in Vero cells. Eighteen virus isolates were obtained, all of which were orthobunyaviruses. These were identified by reverse transcriptionpolymerase chain reaction (RT-PCR) and nucleotide sequencing as Cache Valley virus (n ¼ 17) and South River virus (n ¼ 1). A subset (n ¼ 20,124) of Culex quinquefasciatus collected throughout the year was further tested by RT-PCR using flavivirus-specific primers. Flavivirus RNA was present in this mosquito species year-round. The overall flavivirus minimal infection rate, expressed as the number of positive mosquito pools per 1000 mosquitoes tested, was 7.7 and the monthly flavivirus minimal infection rates ranged from 4.3 to 16.6. Approximately one-third of the RT-PCR products were sequenced and all corresponded to Culex flavivirus, a recently discovered insect-specific flavivirus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.