Electromagnetic forming is a high-speed process, which features contactless force transmission. Hence, punching operations can be realized with a one-sided die and without a mechanical punch. As the forces act as body forces in the part near the surface, the process is especially convenient for embossing microstructures on thin sheet metals. Nevertheless, the die design is critical concerning wear like adhesion. Several die materials were tested, like aluminum, copper as well as different steel types. For all die materials adhesion phenomena were observed. To prevent such adhesion an a-C:H-PVD (Physical Vapor Deposition)-coating was applied to steel dies (X153CrMoV12) and tested by embossing aluminum sheets (Al99.5). By this enhancement of the die adhesion was prevented. Furthermore, the die surface was structured with tribology-effective patterns that were generated by micro hard milling. The embossing quality was topographically analyzed with respect to different initial surface states of the sheets. It was identified that thicker sheets facilitate better embossing results. Moreover, the initial sheet surface has a decisive influence on the embossing quality, whereby the characteristic of the topography showed different susceptibility on the initial sheet surface state.
Electromagnetic embossing enables the transfer of surface structures from forming dies to metal sheets at high forming speeds. For this purpose, the contactless forming force is provided by means of a magnetic field of a tool coil which interacts with an eddy current in the workpiece. In thin sheets which are completely penetrated by the magnetic field, the resulting Lorentz forces act as body forces that accelerate the workpiece onto the forming die. In addition to the body forces, also high strain rates can support the embossing of thin sheets. This investigation deals with the embossing of pyramidal structures in the submillimeter range and an aspect ratio of about 1 into thin aluminum sheets (3.0255 / Al99,5). In order to quantify the reproduced microstructures, their extent is determined by means of a lateral analysis. From this, the replicated height is derived. Up to now it has been possible to partially reproduce microstructures with a large aspect ratio in thin sheets. In addition, the changing surface roughness of the sheets is taken into account. Before embossing, the sheets exhibit a relatively rough surface with a rolled texture, which is smoothed by the impulse forming with an optical forming die. This study reveals basic approaches for the electromagnetic embossing of optical microstructures.
The microfluid jet polishing (MFJP) process is a manufacturing technology in which small abrasive particles (such as diamond, alumina, and ceria) are premixed with a carrier fluid (typically water) to form a liquid suspension that is pressurized and expelled through a nozzle for material removal. The resulting microjet beam—with a typical nozzle exit diameter in the range from 0.1 to 1.0 mm—impinges the workpiece surface for material removal by erosion and/or abrasion and produces an ultraprecision surface. This work applies a computational fluid dynamics (CFD) model to analyze the key phenomena in the interaction of the liquid suspension and the workpiece surface. The liquid film characteristics (film height, minimum film height, positions of the minimum film height, and hydraulic jump) obtained from the CFD simulations are compared with the results derived from empirical formulations found in the literature. Subsequently, the numerical results are utilized to investigate the impact velocity, pressure distribution, and shear stress caused by the suspension on the workpiece surface. It is observed that the shear stress strongly depends on the injection pressure of the liquid suspension and is weakly dependent on the abrasive suspension concentration (the liquid suspension with different densities, viscosities, and surface tensions). Additionally, the particle behavior is investigated in order to estimate the impact velocity and to identify the impact and erosion zones of the liquid suspension on the workpiece surface. Numerical results indicate that ~50% of total particles are impinging the workpiece surface almost perpendicularly (with a mean impact angle of ~86 degrees) for the first time in the stagnation region, where they are strongly decelerated by the carrier fluid before they reach the workpiece surface. These particles, however, rebound on the surface and are reaccelerated by the carrier fluid, impinging the workpiece surface further in the radial direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.