The Landé or g-factors of charge carriers are decisive for the spin-dependent phenomena in solids and provide also information about the underlying electronic band structure. We present a comprehensive set of experimental data for values and anisotropies of the electron and hole Landé factors in hybrid organic-inorganic (MAPbI3, MAPb(Br0.5Cl0.5)3, MAPb(Br0.05Cl0.95)3, FAPbBr3, FA0.9Cs0.1PbI2.8Br0.2, MA=methylammonium and FA=formamidinium) and all-inorganic (CsPbBr3) lead halide perovskites, determined by pump-probe Kerr rotation and spin-flip Raman scattering in magnetic fields up to 10 T at cryogenic temperatures. Further, we use first-principles density functional theory (DFT) calculations in combination with tight-binding and k ⋅ p approaches to calculate microscopically the Landé factors. The results demonstrate their universal dependence on the band gap energy across the different perovskite material classes, which can be summarized in a universal semi-phenomenological expression, in good agreement with experiment.
Metal halide perovskites are the first solution processed semiconductors that can compete in their functionality with conventional semiconductors, such as silicon. Over the past several years, perovskite semiconductors have reported breakthroughs in various optoelectronic devices, such as solar cells, photodetectors, light emitting and memory devices, and so on. Until now, perovskite semiconductors face challenges regarding their stability, reproducibility, and toxicity. In this Roadmap, we combine the expertise of chemistry, physics, and device engineering from leading experts in the perovskite research community to focus on the fundamental material properties, the fabrication methods, characterization and photophysical properties, perovskite devices, and current challenges in this field. We develop a comprehensive overview of the current state-of-the-art and offer readers an informed perspective of where this field is heading and what challenges we have to overcome to get to successful commercialization.
While halide perovskite X-ray detectors based on single crystals could achieve extraordinary sensitivities, detectors based on polycrystalline thick films lag behind in efficiency. This is unfortunate since the processing methods for producing polycrystalline thick films, especially by pressure treatment of powders, are suitable for upscaling. Here, we investigate in detail the pressing of readily prepared powders of methylammonium lead halide perovskites MAPbI3 and MAPbBr3 to thick layers. By time-dependent pressure measurements, we monitor the occurring compaction dynamics, identifying two relaxation processes with different timescales. When pressing at elevated temperatures from room temperature (RT) to 100 °C, the pressure relaxations change drastically. While the layer properties such as relative density and surface roughness only improve to a certain degree by increasing the pressure at RT, we observe relative densities >97%, considerable reduction in surface roughness, and a significant increase in grain size with tempered pressing. Analyses regarding time-dependent pressure relaxations of tempered pressing allow attributing the dynamics to a sintering process, where we find the sinter onset to be surprisingly low at about 30 °C, mainly independent of the applied pressure (10–100 MPa). Our results will allow for an improved and more targeted powder processing of halide perovskite thick films as they are promising candidates for efficient X-ray detectors.
Methylammonium lead triiodine (MAPbI3) is a material representative of the hybrid organic–inorganic lead halide perovskites which currently attract great attention due to their photovoltaic efficiency and bright optoelectronic properties. Here, the coherent spin dynamics of charge carriers and spin-dependent phenomena induced by the carrier interaction with nuclear spins are studied in MAPbI3 single crystals, using time-resolved Kerr rotation at cryogenic temperatures in magnetic fields up to 3 T. Spin dephasing times up to a few nanoseconds and a longitudinal spin relaxation time of 37 ns are measured. The Larmor spin precession of both resident electrons and holes is identified in the Kerr rotation signals. The Landé factors (g-factors) in the orthorhombic crystal phase show a strong anisotropy, ranging for the holes from −0.28 to −0.71 and for the electrons from +2.46 to +2.98, while the g-factor dispersion of about 1% is rather small. An exciton g-factor of +2.3 is measured by magnetoreflectivity. A dynamic nuclear polarization by means of spin-polarized electrons and holes is achieved in tilted magnetic fields giving access to the carrier–nuclei exchange interaction and the nuclear spin relaxation time exceeding 16 min.
Blending the primary alcohols and organo-lead trihalide perovskite (OLTP) precursors solutions with the stoichiometry ABX3 (A = MA+ or FA+; B = Pb2+; X = Cl-, Br- or I-) leads...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.