Only a handful of field studies have examined turbulent flow structure at discordant confluences; the dynamics of flow at such confluences have mainly been examined in the laboratory. This paper reports results of a field‐based investigation of turbulent flow structure at a discordant river confluence. These results support the hypothesis that flow at a discordant alluvial confluence with a velocity ratio greater than 2 exhibits jet‐like characteristics. Scaling analysis shows that the dynamics of the jet core are quite similar to those of free jets but that the complex structure of flow at the confluence imposes strong effects that can locally suppress or enhance the spreading rate of the jet. This jet‐like behavior of the flow has important implications for morphodynamic processes at these types of confluences. The highly energetic core of the jet at this discordant confluence is displaced away from the riverbed, thereby inhibiting scour; however, helical motion develops adjacent to the jet, particularly at high flows, which may promote scour. Numerical experiments demonstrate that the presence or absence of a depositional wedge at the mouth of the tributary can strongly influence detachment of the jet from the bed and the angle of the jet within the confluence.
Summary1. Under natural selection for sexual success, the reproductive organs of plants should evolve to become highly effective pollen receptors. Among wind-pollinated plants, larger reproductive structures appear counter-adapted to accumulate pollen by impaction on their windward surfaces, because airborne particles are less able to penetrate the thicker boundary layer of larger targets. Therefore, it has been proposed that wind-pollinated plants with pollen receptors on relatively large structures, like some grasses (family Poaceae), are architecturally adapted to create downstream vortices in which airborne pollen recirculates before accumulating on leeward surfaces. From this basis, the striking diversity among the grasses in the architecture of their flowering stems has been attributed in part to the existence of these contrasting mechanisms for effecting pollen receipt, namely impact collection and recirculatory collection. 2. We investigated the relative importance of impact and recirculatory collection in grasses by analysing a model system in silico using Computational Fluid Dynamics and by conducting in vivo experiments, both in a wind tunnel and outdoors, using two grass species with compact inflorescences, Alopecurus pratensis and Anthoxanthum odoratum. 3. Irrespective of the experimental approach, we found that although pollen recirculated in the leeward eddies of inflorescences, over 95% of the accumulated pollen was collected by windward surfaces. 4. In A. pratensis, the collection efficiency (proportion of oncoming pollen collected) was between 5% and 20%, depending on wind speed in the range 0AE5-1AE9 m s )1 and these levels conform to those predicted by a mechanistic model of impact collection.5. Our results demonstrate that grass species with larger inflorescences are, like those with smaller inflorescences, primarily impact collectors of airborne pollen, which suggests that dissimilar reproductive morphology among species cannot be attributed to differentiation in the mode of pollen capture and, instead, requires reference to other factors, such as the need to produce, protect and disperse seeds of different sizes in different environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.