Automatic cleaning of MultiBeam EchoSounder (MBES) bathymetric datasets is a critical issue in data processing especially with the objective of nautical charting. A number of approaches have already been investigated in order to provide solution in views of operationally reaching this still challenging problem. This paper aims at providing a comprehensive and structured overview of existing contributions in the literature. For this purpose, a taxonomy is proposed to categorize the whole set of automatic and semi-automatic methods addressing MBES data cleaning. The non-supervised algorithms that compose the majority of the methods developed in the hydrographic field, are mainly described according to both the features of the bathymetric data and the type of outliers to detect. Based on this detailed review, past and future developments are discussed in light of both implementation and test on datasets and metrics used for performances assessment.
Seafloor backscatter mosaics are now routinely produced from multibeam echosounder data and used in a wide range of marine applications. However, large differences (>5 dB) can often be observed between the mosaics produced by different software packages processing the same dataset. Without transparency of the processing pipeline and the lack of consistency between software packages raises concerns about the validity of the final results. To recognize the source(s) of inconsistency between software, it is necessary to understand at which stage(s) of the data processing chain the differences become substantial. To this end, willing commercial and academic software developers were invited to generate intermediate processed backscatter results from a common dataset, for cross-comparison. The first phase of the study requested intermediate processed results consisting of two stages of the processing sequence: the one-value-per-beam level obtained after reading the raw data and the level obtained after radiometric corrections but before compensation of the angular dependence. Both of these intermediate results showed large differences between software solutions. This study explores the possible reasons for these differences and highlights the need for collaborative efforts between software developers and their users to improve the consistency and transparency of the backscatter data processing sequence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.