DNA methylation of the cytosine in the CpG dinucleotide is typically associated with gene silencing. Genomic analyses have identified low CpG promoters that are both methylated and transcriptionally active, but the mechanism underlying the activation of these methylated promoters remains unclear. Here we show that CpG methylation of the CRE sequence (TGACGTCA) enhances the DNA binding of the C/EBPα transcription factor, a protein critical for activation of differentiation in various cell types. Transfection assays also show that C/EBPα activates the CRE sequence only when it is methylated. The biological significance of this observation was seen in differentiating primary keratinocyte cultures from newborn mice where certain methylated promoters are both bound by C/EBPα and activated upon differentiation. Experimental demethylation by either 5-azacytidine treatment or DNMT1 depletion diminished both C/EBPα binding and activation of the same methylated promoters upon differentiation suggesting that CpG methylation can localize C/EBPα. Transfection studies in cell cultures using methylated tissue-specific proximal promoters identified half-CRE (CGTCA) and half-C/EBP (CGCAA) sequences that need to be methylated for C/EBPα mediated activation. In primary dermal fibroblasts, C/EBPα activates a different set of methylated tissue-specific promoters upon differentiation into adipocytes. These data identify a new function for methyl CpGs: producing DNA binding sites at half-CRE and half-C/EBP sequences for C/EBPα that are needed to activate tissue-specific genes.
Epidemiologic studies show a positive association between obesity and cancer risk. In addition to increased body adiposity and secretion of fat-derived hormones, obesity is also linked to insulin resistance, type 2 diabetes, and chronic inflammation. We used the fatless A-ZIP/F-1 transgenic mouse to dissociate the relative role of each of these underlying factors in the development of cancer. These mice are unique in that they do not have white fat but do develop type 2 diabetes. In two cancer models, the classic two-stage skin carcinogenesis protocol and the C3(1)/T-Ag transgenic mouse mammary tumor model, A-ZIP/F-1 mice displayed higher tumor incidence, tumor multiplicity, and decreased tumor latency than wild-type mice. We examined circulating levels of adipokines, growth factors, and cytokines. As expected, adipokines (i.e., leptin, adiponectin, and resistin) were undetectable or found at very low levels in the blood of fatless mice. However, insulin, insulin-like growth factor-I, growth hormone, vascular endothelial growth factor, and proinflammatory Th2 cytokines, such as interleukin (IL)-1B, IL-4, and IL-6, were elevated in A-ZIP/F-1 mice. Additionally, we examined multiple phosphorylated proteins (i.e., protein kinase B/Akt and ErbB2/HER-2 kinase) associated with cancer development. Results show that many of these phosphorylated proteins were activated specifically in the A-ZIP/ F-1 skin but not in the wild-type skin. These findings suggest that adipokines are not required for the promotion of tumor development and thus contradict the epidemiologic data linking obesity to carcinogenesis. We postulate that insulin resistance and inflammation are responsible for the positive correlation with cancer observed in A-ZIP/F-1 mice. (Cancer Res 2006; 66(10): 5469-76)
Crucial roles for T-box3 in development are evident by severe limb malformations and other birth defects caused by T-box3 mutations in humans. Mechanisms whereby T-box3 regulates limb development are poorly understood. We discovered requirements for T-box at multiple stages of mouse limb development and distinct molecular functions in different tissue compartments. Early loss of T-box3 disrupts limb initiation, causing limb defects that phenocopy Sonic Hedgehog (Shh) mutants. Later ablation of T-box3 in posterior limb mesenchyme causes digit loss. In contrast, loss of anterior T-box3 results in preaxial polydactyly, as seen with dysfunction of primary cilia or Gli3-repressor. Remarkably, T-box3 is present in primary cilia where it colocalizes with Gli3. T-box3 interacts with Kif7 and is required for normal stoichiometry and function of a Kif7/Sufu complex that regulates Gli3 stability and processing. Thus, T-box3 controls digit number upstream of Shh-dependent (posterior mesenchyme) and Shh-independent, cilium-based (anterior mesenchyme) Hedgehog pathway function.DOI: http://dx.doi.org/10.7554/eLife.07897.001
Background: The promoters of housekeeping genes are well-bound by RNA polymerase II (RNAP) in different tissues. Although the promoters of these genes are known to contain CpG islands, the specific DNA sequences that are associated with high RNAP binding to housekeeping promoters has not been described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.