Abstract. In this paper, we present measurements of total and tropospheric ozone, retrieved from infrared radiance spectra recorded by the Infrared Atmospheric Sounding Interferometer (IASI), which was launched on board the MetOp-A European satellite in October 2006. We compare IASI total ozone columns to Global Ozone Monitoring Experiment-2 (GOME-2) observations and groundbased measurements from the Dobson and Brewer network for one full year of observations (2008). The IASI total ozone columns are shown to be in good agreement with both GOME-2 and ground-based data, with correlation coefficients of about 0.9 and 0.85, respectively. On average, IASI ozone retrievals exhibit a positive bias of about 9 DU (3.3%) compared to both GOME-2 and ground-based measurements. In addition to total ozone columns, the good spectral resolution of IASI enables the retrieval of tropospheric ozone concentrations.
Abstract. On 4 June 2011 an eruption of the Chilean volcano complex Puyehue-Cordón Caulle injected large amounts of volcanic ash into the atmosphere and affected local life as well as hemisphere-wide air traffic. Observations of the Infrared Atmospheric Sounding Interferometer (IASI) flown on board of the MetOp satellite have been exploited to analyze the evolution of the ash plume around the Southern Hemisphere. A novel singular vector-based retrieval methodology, originally developed for observation of desert dust over land and ocean, has been adapted to enable remote sensing of volcanic ash.Since IASI observations in the 8-12 µm window are applied in the retrieval, the method is insensitive to solar illumination and therefore yields twice the observation rate of the ash plume evolution compared to solar backscatter methods from polar orbiting satellites. The retrieval scheme, the emission characteristics and the circumpolar transport of the ash are examined by means of a source-receptor analysis.
Chronic obstructive pulmonary disease (COPD) is one of the most important causes of morbidity and mortality in the world. The disease is often aggravated by periods of increased symptoms requiring medical attention. Among the possible triggers for these exacerbations, meteorological factors are under consideration. The objective of this study was to assess the influence of various meteorological factors on the health status of patients with COPD. For this purpose, the daily number of ambulatory care visits due to COPD was analysed in Bavaria, Germany, for the years 2006 and 2007. The meteorological factors were provided by the model at the European Centre for Medium Range Weather Forecast (ECMWF). For the multivariate analysis, a generalised linear model was used. In Bavaria, an increase of 1% of daily consultations (about 103 visits per day) was found to be associated with a change of 0.72 K temperature, 209.55 of log air surface pressure in Pa, and a decrease of 1% of daily consultations with 1,453,763 Ws m(2) of solar radiation. There also seem to be regional differences between north and south Bavaria; for instance, the effect of wind speed and specific humidity with a lag of 1 day were only significant in the north. This study could contribute to a tool for the prevention of exacerbations. It also serves as a model for the further evaluation of the impact of meteorological factors on health, and could easily be applied to other diseases or other regions.
Abstract. The MINOS (Mediterranean INtensive OxidantStudy) campaign was an international, multi-platform field campaign to measure long-range transport of air-pollution and aerosols from South East Asia and Europe towards the Mediterranean basin during August 2001. High pollution events were observed during this campaign. For the Mediterranean region enhanced tropospheric nitrogen dioxide (NO 2 ) and formaldehyde (HCHO), which are precursors of tropospheric ozone (O 3 ), were detected by the satellite based GOME (Global Ozone Monitoring Experiment) instrument and compared with airborne in situ measurements as well as with the output from the global 3D photochemistry-transport model MATCH-MPIC (Model of Atmospheric Transport and CHemistry -Max Planck Institute for Chemistry). The increase of pollution in that region leads to severe air quality degradation with regional and global implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.