Abstract. During LBA-CLAIRE-98, we found atmospheric layers with aged biomass smoke at altitudes > 10 km over Suriname. CO, CO2, acetonitrile, methyl chloride, hydrocarbons, NO, 03, and aerosols were strongly enhanced in these layers. We estimate
Abstract. An intensive field measurement campaign was performed in July/August 2002 at the Global Atmospheric Watch station Izaña on Tenerife to study the interaction of mineral dust aerosol and tropospheric chemistry (MINATROC). A dense Saharan dust plume, with aerosol masses exceeding 500 µg m-3, persisted for three days. During this dust event strongly reduced mixing ratios of ROx (HO2, CH3O2 and higher organic peroxy radicals), H2O2, NOx (NO and NO2) and O3 were observed. A chemistry boxmodel, constrained by the measurements, has been used to study gas phase and heterogeneous chemistry. It appeared to be difficult to reproduce the observed HCHO mixing ratios with the model, possibly related to the representation of precursor gas concentrations or the absence of dry deposition. The model calculations indicate that the reduced H2O2 mixing ratios in the dust plume can be explained by including the heterogeneous removal reaction of HO2 with an uptake coefficient of 0.2, or by assuming heterogeneous removal of H2O2 with an accommodation coefficient of 5x10-4. However, these heterogeneous reactions cannot explain the low ROx mixing ratios observed during the dust event. Whereas a mean daytime net ozone production rate (NOP) of 1.06 ppbv/hr occurred throughout the campaign, the reduced ROx and NOx mixing ratios in the Saharan dust plume contributed to a reduced NOP of 0.14-0.33 ppbv/hr, which likely explains the relatively low ozone mixing ratios observed during this event.
Abstract. Formaldehyde (HCHO) is an important intermediate product in the photochemical degradation of methane and non-methane volatile organic compounds. In August 2001, airborne formaldehyde measurements based on the Hantzsch reaction technique were performed during the Mediterranean INtensive Oxidant Study, MINOS. The detection limit of the instrument was 42 pptv (1σ ) at a time resolution of 180 s (10-90%). The overall uncertainty of the HCHO measurements was 30% at a mixing ratio of 300 pptv. In the marine boundary layer over the eastern Mediterranean Sea average HCHO concentrations were of the order of 1500 pptv, in reasonable agreement with results from a three-dimensional global chemical transport model of the lower atmosphere including non-methane volatile organic compound (NMVOC) chemistry. Above the boundary layer HCHO mixing ratios decreased with increasing altitude to a minimum level of 250 pptv at about 7 km. At higher altitudes (above 7 km) HCHO levels showed a strong dependency on the airmass origin. In airmasses from the North Atlantic/North American area HCHO levels were of the order of 300 pptv, a factor of 6 higher than values predicted by the model. Even higher HCHO levels, increasing to values of the order of 600 pptv at 11 km altitude, were observed in easterlies transporting air affected by the Indian monsoon outflow towards the Mediterranean basin. Only a small part (∼30 pptv) of the large discrepancy between the model results and the measurements of HCHO in the free troposphere could be explained by a strong underestimation of the upper tropospheric acetone concentration by up to a factor of ten by the 3D-model. Therefore, the measurement-model difference in the upper troposphere remains unresolved, while the observed dependency of HCHO on airmass origin might indicate that unknown, relatively long-lived NMVOCs -or their reaction intermediCorrespondence to: H. Fischer (hofi@mpch-mainz.mpg.de) ates -associated with biomass burning are at least partially responsible for the observed discrepancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.