There are neural recording applications in which the amplitude of common-mode interfering signals is several orders of magnitude higher than the amplitude of the signals of interest. This challenging situation for neural amplifiers occurs, among other applications, in neural recordings of weakly electric fish or nerve activity recordings made with cuff electrodes. This paper reports an integrated neural amplifier architecture targeting in-vivo recording of local field potentials and unitary signals from the brain stem of a weakly electric fish Gymnotus omarorum. The proposed architecture offers low noise, high common-mode rejection ratio (CMRR), current-efficiency, and a high-pass frequency fixed without MOS pseudoresistors. The main contributions of this work are the overall architecture coupled with an efficient and simple single-stage circuit for the amplifier main transconductor, and the ability of the amplifier to acquire biopotential signals from high-amplitude common-mode interference in an unshielded environment. A fully-integrated neural preamplifier, which performs well in line with the state-of-the-art of the field while providing enhanced CMRR performance, was fabricated in a 0.5 m CMOS process. Results from measurements show that the gain is 49.5 dB, the bandwidth ranges from 13 Hz to 9.8 kHz, the equivalent input noise is 1.88 V, the CMRR is 87 dB and the Noise Efficiency Factor is 2.1. In addition, in-vivo recordings of weakly electric fish neural activity performed by the proposed amplifier are introduced and favorably compared with those of a commercial laboratory instrumentation system.
This work presents a wireless multichannel electroencephalogram (EEG) recording system featuring lossless and near-lossless compression of the digitized EEG signal. Two novel, low-complexity, efficient compression algorithms were developed and tested in a low-power platform. The algorithms were tested on six public EEG databases comparing favorably with the best compression rates reported up to date in the literature. In its lossless mode, the platform is capable of encoding and transmitting 59-channel EEG signals, sampled at 500 Hz and 16 bits per sample, at a current consumption of 337 A per channel; this comes with a guarantee that the decompressed signal is identical to the sampled one. The near-lossless mode allows for significant energy savings and/or higher throughputs in exchange for a small guaranteed maximum per-sample distortion in the recovered signal. Finally, we address the tradeoff between computation cost and transmission savings by evaluating three alternatives: sending raw data, or encoding with one of two compression algorithms that differ in complexity and compression performance. We observe that the higher the throughput (number of channels and sampling rate) the larger the benefits obtained from compression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.