Fragile X syndrome (FXS) is the most common cause of inherited intellectual disabilities and autism spectrum disorders, and it is an X‐linked disorder in which there is a deficiency of the fragile X mental retardation 1 protein. This protein is crucial in regulating translation of mRNAs related to dendritic maturation and cognitive development. The phenotype of FXS is characterized by neurobehavioral alterations, social deficits, communication difficulties, and findings which suggest an alteration of connective tissue, especially in the ligaments and muscles, cardiovascular system and genitourinary system. Connective tissue connects and supports all other tissues of the body and is composed of cells and extracellular matrix (ECM). Several proteins have been involved in the connective tissue abnormalities associated with the FXS, such as matrix metalloproteinase 9, which plays an important role in the homeostasis of the ECM, being a potential therapeutic target for certain tetracycline antibiotics that have shown beneficial effects in FXS. Here, we review connective tissue problems described in FXS.
Premutation carriers of the FMR1 gene (CGG repeats between 55 and 200) usually have normal intellectual abilities but approximately 20% are diagnosed with developmental problems or autism spectrum disorder. Additionally, close to 50% have psychiatric problems such as anxiety, ADHD and/or depression. The spectrum of fragile X disorders also includes Fragile‐X‐associated primary ovarian insufficiency (FXPOI) in female carriers and Fragile‐X‐associated tremor/ataxia syndrome (FXTAS) in older male and female carriers.
We evaluated 25 premutation carriers in the rural community of Ricaurte Colombia and documented all behavioral problems, social deficits and clinical signs of FXPOI and FXTAS as well as reviewed the medical and obstetric history.
We found an increased frequency and severity of symptoms of fragile X spectrum disorders, which might be related to the vulnerability of FMR1 premutation carriers to higher exposure to neurotoxic pesticides in this rural community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.