The ensemble Kalman filter (EnKF) and its deterministic variants, mostly square root filters such as the ensemble transform Kalman filter (ETKF), represent a popular alternative to variational data assimilation schemes and are applied in a wide range of operational and research activities. Their forecast step employs an ensemble integration that fully respects the nonlinear nature of the analyzed system. In the analysis step, they implicitly assume the prior state and observation errors to be Gaussian. Consequently, in nonlinear systems, the analysis mean and covariance are biased, and these filters remain suboptimal. In contrast, the fully nonlinear, non-Gaussian particle filter (PF) only relies on Bayes's theorem, which guarantees an exact asymptotic behavior, but because of the so-called curse of dimensionality it is exposed to weight collapse. Here, it is shown how to obtain a new analysis ensemble whose mean and covariance exactly match the Bayesian estimates. This is achieved by a deterministic matrix square root transformation of the forecast ensemble, and subsequently a suitable random rotation that significantly contributes to filter stability while preserving the required second-order statistics. The properties and performance of the proposed algorithm are further investigated via a set of experiments. They indicate that such a filter formulation can increase the analysis quality, even for relatively small ensemble sizes, compared to other ensemble filters in nonlinear, non-Gaussian scenarios. Localization enhances the potential applicability of this PF-inspired scheme in largerdimensional systems. The proposed algorithm, which is fairly easy to implement and computationally efficient, is referred to as the nonlinear ensemble transform filter (NETF).
This work assesses the large-scale applicability of the recently proposed nonlinear ensemble transform filter (NETF) in data assimilation experiments with the NEMO ocean general circulation model. The new filter constitutes a second-order exact approximation to fully nonlinear particle filtering. Thus, it relaxes the Gaussian assumption contained in ensemble Kalman filters. The NETF applies an update step similar to the local ensemble transform Kalman filter (LETKF), which allows for efficient and simple implementation. Here, simulated observations are assimilated into a simplified ocean configuration that exhibits globally highdimensional dynamics with a chaotic mesoscale flow. The model climatology is used to initialize an ensemble of 120 members. The number of observations in each local filter update is of the same order resulting from the use of a realistic oceanic observation scenario. Here, an importance sampling particle filter (PF) would require at least 10 6 members. Despite the relatively small ensemble size, the NETF remains stable and converges to the truth. In this setup, the NETF achieves at least the performance of the LETKF. However, it requires a longer spinup period because the algorithm only relies on the particle weights at the analysis time. These findings show that the NETF can successfully deal with a large-scale assimilation problem in which the local observation dimension is of the same order as the ensemble size. Thus, the second-order exact NETF does not suffer from the PF's curse of dimensionality, even in a deterministic system.
The recently-proposed nonlinear ensemble transform filter (NETF) is extended to a fixed-lag smoother. The NETF approximates Bayes' theorem by applying a square root update. The smoother (NETS) is derived and formulated in a joint framework with the filter. The new smoother method is evaluated using the low-dimensional, highly nonlinear Lorenz-96 model and a square-box configuration of the NEMO ocean model, which is nonlinear and has a higher dimensionality. The new smoother is evaluated within the same assimilation framework against the local error subspace transform Kalman filter (LESTKF) and its smoother extension (LESTKS), which are state-of-the-art ensemble squareroot Kalman techniques. In the case of the Lorenz-96 model, both the filter NETF and its smoother extension NETS provide lower errors than the LESTKF and LESTKS for sufficiently large ensembles. In addition, the NETS shows a distinct dependence on the smoother lag, which results in a stronger error increase beyond the optimal lag of minimum error. For the experiment using NEMO, the smoothing in the NETS effectively reduces the errors in the state estimates, compared to the filter. For different state variables very similar optimal smoothing lags are found, which allows for a simultaneous tuning of the lag. In comparison to the LESTKS, the smoothing with the NETS yields a smaller relative error reduction with respect to the filter result, and the optimal lag of the NETS is shorter in both experiments. This is explained by the distinct update mechanisms of both filters. The comparison of both experiments shows that the NETS can provide better state estimates with similar smoother lags if the model exhibits a sufficiently high degree of nonlinearity or if the observations are not restricted to be Gaussian with a linear observation operator.
The Brier score (BS) and its generalizations to the multicategory ranked probability score (RPS) and to the continuous ranked probability score (CRPS) are the prominent verification measures for probabilistic forecasts. Particularly, their decompositions into measures quantifying the reliability, resolution, and uncertainty of the forecasts are attractive. Information theory sets up the natural framework for forecast verification. Recently, it has been shown that the BS is a second-order approximation of the information-based ignorance score (IGN), which also contains easily interpretable components and can also be generalized to a ranked version (RIGN). Here, the IGN, its generalizations, and decompositions are systematically discussed in analogy to the variants of the BS. Additionally, a continuous ranked IGN (CRIGN) is introduced in analogy to the CRPS. The applicability and usefulness of the conceptually appealing CRIGN are illustrated, together with an algorithm to evaluate its components reliability, resolution, and uncertainty for ensemble-generated forecasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.