The human pathogen Haemophilus influenzae has the ability to quickly adapt to different host environments through phase variation of multiple structures on its lipooligosaccharide (LPS), including phosphorylcholine (ChoP). During colonization with H. influenzae, there is a selection for ChoP+ phase variants. In a murine model of nasopharyngeal colonization, this selection is lost in the absence of adaptive immunity. Based on previous data highlighting the importance of natural antibody in limiting H. influenzae colonization, the effect of ChoP expression on antibody binding and its bactericidal activity was investigated. Flow cytometric analysis revealed that ChoP+ phase variants had decreased binding of antibody to LPS epitopes compared to ChoP− phase variants. This difference in antibody binding correlated with increased survival of ChoP+ phase variants in the presence of antibody-dependent, complement-mediated killing. ChoP+ phase variants were also more resistant to trypsin digestion, suggesting a general effect on the physical properties of the outer membrane. Moreover, ChoP-mediated protection against antibody binding correlated with increased resilience of outer membrane integrity. Collectively, these data suggest that ChoP expression provides a selective advantage during colonization through ChoP-mediated effects on the accessibility of bactericidal antibody to the cell surface.
In this study, it is shown that systematic temperature-induced protein aggregation occurs on the erythrocyte membrane by intermolecular disulfide bond formation. Specific protein bands disappear from acrylamide gel profiles over rather narrow temperature regions. The aggregation appears to be the result of irreversible structural transitions of the membrane, which can be seen in a sensitive scanning calorimeter. When this method of thermal gel analysis is used, the results suggest that spectrin is a participant in the A transition, that bands 2.1, 4.1, and 4.2 and the cytoplasma portion of 3 are involved in the B transition, and that the transmembrane portion of band 3 may undergo changes in the C transition, previously shown to occur in the anion transport domain of the membrane. The aggregation of specific proteins in the narrow temperature region of these transitions persists as the transitions are moved around on the temperature axis by varying solution conditions. The assignment of particular proteins to specific transitions is reinforced by selective extraction of membrane proteins. Large variations in both the calorimetry and the aggregation pattern occur as salt concentration is increased from 77 mosm to 310 mosm, which is manifested in the splitting of the B transition into two separate transitions, B1 and B2. It is speculated that this occurs as the result of a structural change which may involve components of the cytoskeletal network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.