Patient-specific orthopaedic implants are emerging as a clinically promising treatment option for a growing number of conditions to better match an individual's anatomy. Patient-specific implant (PSI) technology aims to reduce overall procedural costs, minimize surgical time, and maximize patient outcomes by achieving better biomechanical implant fit. With this commercially-available technology, computed tomography or magnetic resonance images can be used in conjunction with specialized computer programs to create preoperative patient-specific surgical plans and to develop custom cutting guides from 3-D reconstructed images of patient anatomy. Surgeons can then place these temporary guides or "jigs" during the procedure, allowing them to better recreate the exact resections of the computer-generated surgical plan. Over the past decade, patient-specific implants have seen increased use in orthopaedics and they have been widely indicated in total knee arthroplasty, total hip arthroplasty, and corrective osteotomies. Patient-specific implants have also been explored for use in total shoulder arthroplasty and spinal surgery. Despite their increasing popularity, significant support for PSI use in orthopaedics has been lacking in the literature and it is currently uncertain whether the theoretical biomechanical advantages of patient-specific orthopaedic implants carry true advantages in surgical outcomes when compared to standard procedures. The purpose of this review was to assess the current status of patient-specific orthopaedic implants, to explore their future direction, and to summarize any comparative published studies that measure definitive surgical characteristics of patient-specific orthopaedic implant use such as patient outcomes, biomechanical implant alignment, surgical cost, patient blood loss, or patient recovery.
Salmonella is a leading source of bacterial foodborne illness in humans, causing gastroenteritis outbreaks with bacteraemia occurrences that can lead to clinical complications and death. Eggs, poultry and pig products are considered as the main carriers of the pathogenic Salmonella for humans. To prevent this relevant zoonosis, key changes in food safety regulations were undertaken to improve controls in the food production chain. Despite these measures, large outbreaks of salmonellosis were reported worldwide in the last decade. Thus, new strategies for Salmonella detection are a priority for both, food safety and public health authorities. Such detection systems should provide significant reduction in diagnostic time (hours) compared to the currently available methods (days). Herein, we report on the discovery and characterization of nucleic acid probes for the sensitive and specific detection of live Salmonella within less than 8 hours of incubation. We are the first to postulate the nuclease activity derived from Salmonella as biomarker of infection and its utility to develop innovative detection strategies. Our results have shown the screening and identification of two oligonucleotide sequences (substrates) as the most promising probes for detecting Salmonella -Sal-3 and Sal-5. The detection limits for both probes were determined with the reference Salmonella Typhimurium (STM 1) and Salmonella Enteritidis (SE 1) cultures. Sal-3 has reported LOD values around 10 5 CFU mL -1 for STM 1 and 10 4 CFU mL -1 for SE 1, while Sal-5 proves to be a slightly better probe, with LODs of 10 4 CFU mL -1 for STM 1 and 10 4 CFU mL -1 for SE 1. Both selected probes have shown the capability to recognize 49 out of 51 different Salmonella serotypes tested in vitro and the most frequent serotypes in porcine mesenteric lymph nodes as a standard sample used in fattening-pig salmonellosis baseline studies. Notably, our results showed 100% correlation between nuclease detection and the PCR-InvA or ISO-6579 standard method, underlining the great potential of this innovative nucleic acids technology to be implemented as a rapid method for food safety testing.
Breast cancer is one of the most common pathologies diagnosed in the clinical practice. Despite major advancements in diagnostic approaches, there is no widely accepted biomarker in the clinical practice that can diagnose breast malignancy. Confirmatory diagnosis still relies on the pathological assessment of tissue biopsies by expert pathologists. Thus, there is an unmet need for new types of biomarkers and novel platform technologies that can be easily and robustly integrated into the clinic and that can assist pathologists. Herein, we show that nuclease activity associated to malignant tumors can be used as a novel biomarker in breast cancer, which can be detected via specific degradation of nucleic acid probes. In this study we have identified a set of three chemically modified nucleic acid probes that can diagnose malignancy in biopsy samples with high accuracy (89%), sensitivity (82%) and specificity (94%). This work represents a breakthrough for the potential clinical use of nuclease activity as biomarker, which can be detected via nucleic acids probes, for the clinical diagnosis of malignancy in breast tissue biopsies. This platform technology could be readily implemented into the clinic as adjunct to histopathological diagnostic.
An undecamer oligonucleotide probe based on a pair of deoxythymidines flanked by several modified nucleotides is a specific and highly efficient biosensor for micrococcal nuclease (MNase), an endonuclease produced by Staphylococcus aureus . Herein, the interaction mode and cleavage process on such oligonucleotide probes are identified and described for the first time. Also, we designed truncated pentamer probes as the minimum-length substrates required for specific and efficient biosensing. By means of computational (virtual docking) and experimental (ultra-performance liquid chromatography–mass spectrometry and matrix-assisted laser desorption ionization time-of-flight) techniques, we perform a sequence/structure–activity relationship analysis, propose a catalytically active substrate–enzyme complex, and elucidate a novel two-step phosphodiester bond hydrolysis mechanism, identifying the cleavage sites and detecting and quantifying the resulting probe fragments. Our results unravel a picture of both the enzyme–biosensor complex and a two-step cleavage/biosensing mechanism, key to the rational oligonucleotide design process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.