Psychiatric disorders are debilitating diseases, affecting >80 million people worldwide. There are no causal cures for psychiatric disorders and available therapies only treat the symptoms. The etiology of psychiatric disorders is unknown, although it has been speculated to be a combination of environmental, stress and genetic factors. One of the neurotransmitter systems implicated in the biology of psychiatric disorders is the purinergic system. In this review, we performed a comprehensive search of the literature about the role and function of the purinergic system in the development and predisposition to psychiatric disorders, with a focus on depression, schizophrenia, bipolar disorder, autism, anxiety and attention deficit/hyperactivity disorder. We also describe how therapeutics used for psychiatric disorders act on the purinergic system.
Bone marrow metastasis occurs in approximately 350,000 patients that annually die in the U.S. alone. In view of the importance of tumor cell migration into the bone marrow, we have here investigated effects of various concentrations of stromal cell-derived factor-1 (SDF-1), bradykinin- and ATP on bone marrow metastasis. We show for first time that bradykinin augmented chemotactic responsiveness of neuroblastoma cells to SDF-1 and ATP concentrations, encountered under physiological conditions. Bradykinin upregulated VEGF expression, increased metalloproteinase activity and induced adhesion of neuroblastoma cells. Bradykinin augmented SDF-1-induced intracellular Ca2+ mobilization as well as resensitization and expression of ATP-sensing P2X7 receptors. Bradykinin treatment resulted in higher gene expression levels of the truncated P2X7B receptor compared to those of the P2X7A full-length isoform. Bradykinin as pro-metastatic factor induced tumor proliferation that was significantly decreased by P2X7 receptor antagonists; however, the peptide did not enhance cell death nor P2X7A receptor-related pore activity, promoting neuroblastoma growth. Furthermore, immunodeficient nude/nude mice transplanted with bradykinin-pretreated neuroblastoma cells revealed significantly higher metastasis rates compared to animals injected with untreated cells. In contrast, animals receiving Brilliant Blue G, a P2X7 receptor antagonist, did not show any specific dissemination of neuroblastoma cells to the bone marrow and liver, and metastasis rates were drastically reduced. Our data suggests correlated actions of kinins and purines in neuroblastoma dissemination, providing novel avenues for clinic research in preventing metastasis.
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by decreased dopamine bioavailability in the substantia nigra and the striatum. Taking into account that adenosine-5’-triphosphate (ATP) and its metabolites are intensely released in the 6-hydroxydopamine (6-OHDA) animal model of PD, screening of purinergic receptor gene expression was performed. Effects of pharmacological P2Y6 or P2X7 receptor antagonism were studied in preventing or reversing hemiparkinsonian behavior and dopaminergic deficits in this animal model. P2X7 receptor antagonism with Brilliant Blue G (BBG) at a dose of 75 mg/kg re-established the dopaminergic nigrostriatal pathway in rats injured with 6-OHDA. Selective P2Y6 receptor antagonism by MRS2578 prevented dopaminergic neuron death in SH-SY5Y cells in vitro and in vivo in the substantia nigra of rats injured with 6-OHDA. Moreover, in vivo analysis showed that both treatments were accompanied by a reduction of microglial activation in the substantia nigra. Altogether, these data provide evidence that antagonism of P2X7 or P2Y6 receptors results in neuroregenerative or neuroprotective effects, respectively, possibly through modulation of neuroinflammatory responses.
Since proving adenosine triphosphate (ATP) functions as a neurotransmitter in neuron/glia interactions, the purinergic system has been more intensely studied within the scope of the central nervous system. In neurological disorders with associated motor symptoms, including Parkinson's disease (PD), motor neuron diseases (MND), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Huntington's Disease (HD), restless leg syndrome (RLS), and ataxias, alterations in purinergic receptor expression and activity have been noted, indicating a potential role for this system in disease etiology and progression. In neurodegenerative conditions, neural cell death provokes extensive ATP release and alters calcium signaling through purinergic receptor modulation. Consequently, neuroinflammatory responses, excitotoxicity and apoptosis are directly or indirectly induced. This review analyzes currently available data, which suggests involvement of the purinergic system in neuro-associated motor dysfunctions and underlying mechanisms. Possible targets for pharmacological interventions are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.