Aim: To analyse the influence of ethylenediaminetetraacetic acid (EDTA) on the repair process in immature rat molars after a regenerative endodontic procedure (REP). Methodology:The lower first molars of 12 4-week-old Wistar rats underwent pulpectomy in the mesial root and were divided into the following groups: sodium hypochlorite (NaOCl; n = 6) -the mesial canals were irrigated with 2.5% NaOCl for 5 min, and NaOCl-EDTA (n = 6) -the canals were irrigated with 2.5% NaOCl, followed by 17% EDTA for 5 min each. After evoking bleeding using a size 10 K-file, the cavities were sealed. Three molars on the untreated side were randomly used as control (control-15 d; n = 3), and three molars from the other three rats untreated were used as immediate control (n = 3). After 15 days (NaOCl, NaOCl-EDTA and control-15 d groups) or immediately (control-immediate), the animals were euthanized, and the teeth were subjected to histologic evaluation of tissue regeneration and presence of collagen fibres. Mann-Whitney U-test was used (p < .05). Results:The experimental groups had newly formed cementum-like tissue and increased root length and thickness. Half of the specimens in NaOCl-EDTA group showed apical foramen closure, whilst the NaOCl group had partial apical closure.The experimental groups showed inflammatory infiltrate extending mainly to the medium third of the root canal. These parameters were similar between experimental groups (p > .05). Newly formed connective tissue in the pulp space was significantly higher in the NaOCl-EDTA group than in NaOCl group (p < .05). Regarding the collagen fibres, the NaOCl-EDTA group had more collagen fibres in the root tip, but there was no significant difference compared to NaOCl group, and both groups showed greater amount of immature fibres in this area; in the centre of the apical third of root canal, there was equivalence between mature and immature fibres from both groups (p > .05).
This study evaluated the biocompatibility, biomineralization, and collagen fiber maturation induced by Resorbable Tissue Replacement (RTR®; β-tricalcium phosphate [TCP]), Bioglass (BIOG; bioactive glass), and DM Bone® (DMB; hydroxyapatite and β-TCP) in vivo. Sixty-four polyethylene tubes with or without (control group; CG) materials (n=8/group/period) were randomly implanted in the subcutaneous tissue of 16 male Wistar rats (four per rat), weighting 250 to 280 g. The rats were killed after 7 and 30 days (n=8), and the specimens were removed for analysis of inflammation using hematoxylin-eosin; biomineralization assay using von Kossa (VK) staining and polarized light (PL); and collagen fiber maturation using picrosirius red (PSR). Nonparametric data were statistically analyzed by Kruskal-Wallis and Dunn tests, and parametric data by one-way ANOVA test (p<0.05). At 7 days, all groups induced moderate inflammation (p>0.05). At 30 days, there was mild inflammation in the BIOG and CG, and moderate inflammation in the RTR and DMB groups, with a significant difference between the CG and RTR (p<0.05). The fibrous capsule was thick at 7 days and predominantly thin at 30 days in all groups. All materials exhibited structures that stained positively for VK and PL. Immature collagen fibers were predominant at 7 and 30 days in all groups (p>0.05), although DMB exhibited more mature fibers than BIOG at 30 days (p<0.05). RTR, BIOG, and DMB were biocompatible, inducing inflammation that reduced over time and biomineralization in the subcutaneous tissue of rats. DMB exhibited more mature collagen fibers than BIOG over a longer period.
ObjectivesThis systematic review (PROSPERO CRD42021227711) evaluated the influence of diabetes mellitus (DM) on the response of the pulp tissue and in the pulp cells behaviour.Materials and MethodsSearches in PubMed/MEDLINE, Embase, Web of Science and OpenGrey were performed until March 2022. Studies evaluating the effects of DM in the pulp tissue inflammation and in the cell behaviour were included, followed by risk of bias assessment (Methodological Index for Non‐Randomized Studies and SYRCLE's RoB tools). The meta‐analysis was unfeasible, and a narrative synthesis for each outcome was provided.ResultsOf the 615 studies, 21 were eligible, mainly with in vivo analysis (16 studies). The pulp inflammation (10 studies) was analysed mainly by haematoxylin–eosin stain; DM increased pulp inflammation/degeneration in 9 studies, especially after dental procedures. The cell viability (5 studies) was analysed mostly using MTT assay; DM and glycating agents decreased cellular viability in 3 studies. DM reduced collagen in all of three studies. There were controversial results regarding mineralization; however, increased alkaline phosphatase was reported in three of four studies.ConclusionsDM seems to increase inflammation/degeneration and mineralization in the pulp tissue while reducing cell proliferation. Further analyses in human pulp are important to provide stronger evidence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.