Ceratium Schrank is a planktonic dinoflagellate ubiquitous in temperate and subtropical freshwater environments from Northern Hemisphere. Over the past two decades, Ceratium species have been recorded in South American water bodies, with expansive behavior and fast colonization. This study registered C. furcoides (Levander) Langhans and C. hirundinella (O. F. Müller) Dujardin for the first time in South Brazil. Ceratium furcoides was found in samples from States of Paraná and Rio Grande do Sul and C. hirundinella occurred only in the southernmost Brazil. No co-occurrence of these species was detected on samples. The morphological variation, as well as the dispersal patterns of these species in Brazilian environments, is discussed based on LM and SEM analyses.
Several molecules have been shown to be involved in glial-neuronal communication, including S100B, an astrocyte-derived neurotrophic cytokine. Extracellular S100B protects hippocampal neurons from excitotoxic damage, whilst toxic levels of glutamate to neurons have been shown to reduce S100B secretion in astrocytes and brain slices, by an unknown mechanism. Here, we investigate which mechanisms are possibly involved in this effect in primary cultures of hippocampal astrocytes using glutamate agonists and glutamate uptake inhibitors. DCG-IV, an agonist of group II metabotropic glutamate receptors, caused a smaller decrease in S100B secretion when compared to 1 mM glutamate. D: -aspartate partially reverted the glutamate effect on S100B release and two other inhibitors, PDC and DIDS, reverted it completely. These findings suggest that S100B secretion is inversely coupled to glutamate uptake. Decrease in S100B secretion may be considered as direct excitotoxic damage, but a beneficial mechanism effect cannot be ruled out, because S100B elevation could cause an additional cell death.
S100B belongs to a family of calcium-binding proteins involved in cell cycle and cytoskeleton regulation. We observed an inhibitory effect of S100B on glial fibrillary acidic protein (GFAP) phosphorylation, when stimulated by cAMP or Ca2+/calmodulin, in a cytoskeletal fraction from primary astrocyte cultures. We found that S100B has no direct effect on CaM KII activity, the major kinase in this cytoskeletal fraction able to phosphorylate GFAP. The inhibition of GFAP phosphorylation is most likely due to the binding of S100B to the phosphorylation sites on this protein and blocking the access of these sites to the protein kinases. This inhibition was dependent on Ca2+. However, Zn2+ could substitute for Ca2+. The inhibitory effect of S100B was prevented by TRTK-12, a peptide that blocks S100B interaction with several target proteins including glial fibrillary acidic protein. These data suggest a role for S100B in the assembly of intermediate filaments in astrocytes.
1. The effect of guanosine on L-[3H] glutamate uptake was investigated in brain cortical slices within physio-pathological range of glutamate(1-1000 microM). In these conditions, glutamate uptake was significantly enhanced in slices treated with 100 microM guanosine only at 100 and 300 microM glutamate (44 and 52%, respectively). 2. Evaluation of kinetic parameters showed that guanosine affected significantly only uptake Vmax (23%). 3. The guanosine withdrawal did not abolish its significant effect on glutamate uptake when 100 or 300 microM glutamate were used (an increase of 66 and 35%, respectively). 4. These results support the hypothesis of a protective role for guanosine during excitotoxic conditions when glutamate levels are enhanced (e.g. brain ischemia and seizures), possibly by activating glutamate uptake. Moreover, our results may contribute to understand the antiexcitotoxic mechanism of guanosine on glutamate transport, giving new information concerning its mechanism of action.
In the present work, we have used a rat animal model to study the early effects of intrauterine asphyxia occurring no later than 60 min following the cesarean-delivery procedure. Transitory hypertonia accompanied by altered posture was observed in asphyxiated pups, which also showed appreciably increased lactate values in plasma and hippocampal tissues. Despite this, there was no difference in terms of either cell viability or metabolic activities such as oxidation of lactate, glucose, and glycine in the hippocampus of those fetuses submitted to perinatal asphyxia with respect to normoxic animals. Moreover, a significant decrease in glutamate, but not GABA uptake was observed in the hippocampus of asphyctic pups. Since intense ATP signaling especially through P2X(7) purinergic receptors can lead to excitotoxicity, a feature which initiates neurotransmission failure in experimental paradigms relevant to ischemia, here we assessed the expression level of the P2X(7) receptor in the paradigm of perinatal asphyxia. A three-fold increase in P2X(7) protein was transiently observed in hippocampus immediately following asphyxia. Nevertheless, further studies are needed to delineate whether the P2X(7) receptor subtype is involved in the pathogenesis, contributing to ongoing brain injury after intrapartum asphyxia. In that case, new pharmacologic intervention strategies providing neuroprotection during the reperfusion phase of injury might be identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.