A layer-by-layer methodology was used for synthesizing CeO2/TiO2 and TiO2/CeO2 core–shell nanoparticles supported in Vycor glass pores. The layers were deposited by cerium- or titanium-based metalloorganic precursor decomposition. Sequential depositions promoted linear mass increases of the Vycor pieces and a linear decrease of both total pore size and total surface area, confirmed by N2 adsorption–desorption isotherms. Alternation in the metalloorganic precursors used results in the formation of spherelike nanoparticles (as observed by HRTEM) with core–shell architecture. Raman spectroscopy data showed that CeO2 is crystallized in the fluorite structure and TiO2 in the anatase phase. Shifts in the frequency and changes in line width of TiO2 Eg and CeO2 T2g Raman bands were used for monitoring changes in core size and shell thickness based on the quantum size effect and on the phonon confinement theory. Our results show that nanoparticle core sizes and the shell thicknesses can be tuned by changing the number of depositions used in the synthesis process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.