Copaifera lansdorffii Desf. is known as 'copaíba', 'copaiva' or 'paú-de-óleo', and is found in part of Brazil. The present study was undertaken to evaluate the genotoxic potential of C. langsdorffii leaf hydroalcoholic extract (CLE) and its influence on the genotoxicity induced by the chemotherapeutic agent doxorubicin (DXR) using the Swiss mouse peripheral blood micronucleus test. HPLC analysis of CLE using two monolithic columns linked in series allowed quantification of two major flavonoid heterosides, quercitrin and afzelin. Animals were treated with CLE by gavage at doses of 10, 20, 40 and 80 mg kg(-1) body weight per day, each for 20 days. Peripheral blood samples were collected at 24 and 48 h, and 7, 15 and 21 days after the beginning of the treatment. For the antigenotoxicity evaluation, the animals treated with different concentrations of CLE received DXR (15 mg kg(-1) body weight, intraperitoneal) at day 20. The peripheral blood samples were collected 24 and 48 h after the treatment with DXR. The results demonstrated that CLE itself was not genotoxic in the mouse micronucleus assay. In animals treated with CLE and DXR, the number of micronucleus was significantly decreased compared with animals receiving DXR alone. The putative antioxidant activity of one or more of the active compounds of CLE may explain the effect of this plant on DXR genotoxicity.
BackgroundNatural products display numerous therapeutic properties (e.g., antibacterial activity), providing the population with countless benefits. Therefore, the search for novel biologically active, naturally occurring compounds is extremely important. The present paper describes the antibacterial action of the Copaifera langsdorffii oleoresin and ten compounds isolated from this oleoresin against multiresistant bacteria; it also reports the antiproliferative activity of the Copaifera langsdorffii oleoresin and (-)-copalic acid.MethodsMICs and MBCs were used to determine the antibacterial activity. Time-kill curve assays provided the time that was necessary for the bacteria to die. The Minimum Inhbitory Concentration of Biofilm (CIMB50) of the compounds that displayed the best results was calculated. Cytotoxicity was measured by using the XTT assay.ResultsThe diterpene (-)-copalic acid was the most active antibacterial and afforded promising Minimum Inhibitory Concentration (MIC) values for most of the tested strains. Determination of the bactericidal kinetics against some bacteria revealed that the bactericidal effect emerged within six hours of incubation for Streptococcus pneumoniae. Concerning the antibiofilm action of this diterpene, its MICB50 was twofold larger than its CBM against S. capitis and S. pneumoniae. The XTT assay helped to evaluate the cytotoxic effect; results are expressed as IC50. The most pronounced antiproliferative effect arose in tumor cell lines treated with (-)-copalic acid; the lowest IC50 value was found for the human glioblastoma cell line.ConclusionsThe diterpene (-)-copalic acid is a potential lead for the development of new selective antimicrobial agents to treat infections caused by Gram-positive multiresistant microorganisms, in both the sessile and planktonic mode. This diterpene is also a good candidate to develop anticancer drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.