The viability of a fungal formulation using the nematode-trapping fungus Duddingtonia flagrans was assessed for the biological control of horse cyathostomin. Two groups (fungus-treated and control without fungus treatment), consisting of eight crossbred mares (3-18 years of age) were fed on Cynodon sp. pasture naturally infected with equine cyathostome larvae. Each animal of the treated group received oral doses of sodium alginate mycelial pellets (1g/(10 kg live weight week)), during 6 months. Significant reduction (p<0.01) in the number of eggs per gram of feces and coprocultures was found for animals of the fungus-treated group compared with the control group. There was difference (p<0.01) of 78.5% reduction in herbage samples collected up to (0-20 cm) between the fungus-treated group and the control group, during the experimental period (May-October). Difference of 82.5% (p<0.01) was found between the fungus-treated group and the control group in the sampling distance (20-40 cm) from fecal pats. During the last 3 months of the experimental period (August, September and October), fungus-treated mares had significant weight gain (p<0.01) compared with the control group, an increment of 38 kg. The treatment with sodium alginate pellets containing the nematode-trapping fungus D. flagrans reduced cyathostomin in tropical southeastern Brazil and could be an effective tool for biological control of this parasitic nematode in horses.
The in vitro effect of four isolates of the nematophagous fungi Duddingtonia flagrans (AC 001), Monacrosporium sinense (SF 53), and Pochonia chlamydosporia (VC 1 and VC 4) on eggs of Ascaris suum was evaluated. One hundred thousand A. suum eggs were plated on 2% water-agar with the grown isolates and control without fungus. After 7, 14, and 21 days, 100 eggs were removed and classified according to the following parameters: type 1, lytic effect without morphological damage to eggshell; type 2, lytic effect with morphological alteration of embryo and eggshell; and type 3, lytic effect with morphological alteration of embryo and eggshell, besides hyphal penetration and internal egg colonization. P. chlamydosporia showed ovicidal activity (p < 0.01), mainly of the type 3 effect, on A. suum eggs in the studied intervals of 13.3% (isolate VC 1) and 17.3% (isolate VC 4), 13.9% (VC 1) and 17.7% (VC 4), and 19% (VC 1) and 20% (VC4), respectively, at 7, 14, and 21 days. The other fungi showed no type 3 effect. P. chlamydosporia is a potential biological control agent of A. suum eggs.
Angiostrongylus vasorum is a nematode that parasitizes domestic dogs and wild canids. We compared the predatory capacity of isolates from the predatory fungi Duddingtonia flagrans (AC001), Monacrosporium thaumasium (NF34), Monacrosporium sinense (SF53) and Arthrobotrys robusta (I31) on first-stage larvae (L1) of A. vasorum under laboratory conditions. L1 A. vasorum were plated on 2% water-agar (WA) Petri dishes marked into 4 mm diameter fields with the four grown isolates and a control without fungus. Plates of treated groups contained each 1000 L1 A. vasorum and 1000 conidia of the fungal isolates AC001, NF34, SF53 and I31 on 2% WA. Plates of the control group (without fungus) contained only 1000 L1 A. vasorum on 2% WA. Ten random fields (4 mm diameter) were examined per plate of treated and control groups, every 24 h for 7 days. Nematophagous fungi were not observed in the control group during the experiment. There was no variation in the predatory capacity among the tested fungal isolates (P>0.05) during the 7 days of the experiment. There was a significant reduction (P < 0.05) of 80.3%, 74.5%, 74.2% and 71.8% in the means of A. vasorum L1 recovered from treatments with isolates AC001, NF34, SF53 and I31, respectively, compared to the control without fungi. In this study, the four isolates of predatory fungi were efficient in the in vitro capture and destruction of A. vasorum L1, confirming previous work on the efficiency of nematophagous fungi in the control of nematode parasites of dogs and as a possible alternative method of biological control.
The predatory capacity of the nematophagous fungus Pochonia chlamydosporia (isolate VC4) embedded in sodium alginate pellets after passage through the gastrointestinal tract of horses was assessed in vitro against Oxyuris equi eggs. Twelve previously dewormed crossbred mares, average weight of 362.5kg (+/-21) were used in the experiment. Each animal of the treated group received an oral dose (100g) of sodium alginate pellets containing P. chlamydosporia mycelial mass. The control group received pellets without fungus. Faecal samples from fungus-treated and control groups were collected at intervals of 8, 12, 24, 36, 48 and 72h after pellet administration and placed in Petri dishes containing 2% water-agar. One thousand eggs of O. equi were plated in Petri dishes of both treated and control groups, with six replicates, and incubated in oven, 25 degrees C, in the dark, for 30 days. At the end of the experiment, one hundred eggs were removed from each Petri dish and classified according to the following parameters: type 1, physiological and biochemical effect without morphological damage to eggshell, with hyphae adhered to the shell; type 2, lytic effect with morphological change in the eggshell and embryo without hyphal penetration, and type 3, lytic effect with morphological change in the eggshell and embryo, with hyphal penetration and internal egg colonization. Chlamydospore production was observed in Petri dishes of the treated group. The isolate VC4 remained viable after passing through the gastrointestinal tract of horses and maintained the ovicidal activity against O. equi eggs when compared with the control group (p<0.01) after each collection interval: 29.1% (8h), 28.2% (12h), 31.1% (24h), 27.4% (36h), 30.9% (48h) and 28.4% (72h). The results suggest that P. chlamydosporia could be used as an effective biological control agent of O. equi eggs in natural conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.