The objective of this paper is to verify the land use and land cover change and to relate them with the potential driving forces that have been acting in the state of Santa Catarina, Brazil, during the period from 2000 to 2010. The methodology consists in identifying trends in the land use and land cover change; indicating possible explanatory factors based in factorial analysis for main components and elaborating a final typology, based on cluster analysis. Results include a strong expansion and growing strength of agricultural activity as well as forestry throughout the state and the loss of native vegetation, which points to the need to develop protective actions and occupation and land use regulations, in particular, in the environmental area, encompassing the development of an intensive and mechanized agricultural activity.
The simulation and analysis of future land use and land cover—LULC scenarios using artificial neural networks (ANN)—has been applied in the last 25 years, producing information for environmental and territorial policy making and implementation. LULC changes have impacts on many levels, e.g., climate change, biodiversity and ecosystem services, soil quality, which, in turn, have implications for the landscape. Therefore, it is fundamental that planning is informed by scientific evidence. The objective of this work was to develop a geographic model to identify the main patterns of LULC transitions between the years 2000 and 2018, to simulate a baseline scenario for the year 2036, and to assess the effectiveness of the Chapecó River ecological corridor (an area created by State Decree No. 2.957/2010), regarding the recovery and conservation of forest remnants and natural fields. The results indicate that the forest remnants have tended to recover their area, systematically replacing silviculture areas. However, natural fields (grassland) are expected to disappear in the near future if proper measures are not taken to protect this ecosystem. If the current agricultural advance pattern is maintained, only 0.5% of natural fields will remain in the ecological corridor by 2036. This LULC trend exposes the low effectiveness of the ecological corridor (EC) in protecting and restoring this vital ecosystem.
The studies of spatial-temporal land use and land cover (LULC) change patterns, supported by future scenarios and simulation methods based on the assumption of natural socio-economic and territorial driving forces, allow us to go beyond an accurate diagnosis of the dynamics that have occurred so far, providing a picture of possible alternative futures, and are fundamental in assisting with the planning and policy-making in the territory. In this paper, we use LULC maps and explanatory variables aggregated in five dimensions (physical/natural, economic, sociocultural, technological, and demographic) to identify which are the main drinving forces in the evolution process and the simulation of LULC dynamics for 2036, using as a case study the Chapecó River ecological corridor (Chapecó EC) area. The Chapecó EC was created by the state government in 2010 with the goal of combining nature conservation with local and regional development. In this region, in the last two decades, the loss of areas of natural grassland and forest was on average five times higher than the average recorded in the state. Based on scenario-building methods using artificial neural networks, six predictive scenarios were elaborated, based on three socioeconomic scenarios (current conditions, growth, and socioeconomic recession) and two territorial intervention options (actions). This includes an action based on maintaining the current LULC, and another action of a conservationist nature with the recovery of forest and natural grassland areas to the proportions of areas found in 1990. The results indicate that if the current LULC is maintained, forest, pasture and agriculture areas tend to increase, while silviculture and natural grassland areas decrease, driven by economic and physical/natural driving forces. If there is a conservationist action, natural grassland and pasture areas tend to increase and silviculture and agriculture tend to lose area due to economic, technological, and physical/natural driving forces. These trends have revealed that the natural grassland preservation/restoration, the encouragement of conservationist agricultural practices combined with economic strategies, and the technological development of the rural sector seem to form the basis of economic development combined with biodiversity conservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.