This paper presents a household battery charging and discharging game for a power supply-demand regulation in a peer-to-peer energy sharing, operating in the day-ahead electricity market. The problem is formulated as a noncooperative Nash equilibrium game where the households are considered selfish but rational players whose objectives are to optimize their individual battery state of charge and energy cost. The application of the proposed model to a practical case study of three households shows the potential of the households to regulate the electricity in the smart grid and save their energy costs. Households 1, 2 and 3 operating in the proposed model saved energy costs of up to 59.8%, 58.8% and 58.9%, respectively compared to them operating in a strictly real-time electricity market and household 1, 2 and 3 also had savings of up to 10%, 3.8% and 8.4%, respectively compared to them operating in a strictly day-ahead electricity market.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.