An improved model for reducing the cost of long-term monitoring in Clean Development Mechanism (CDM) lighting retrofit projects is proposed. Cost-effective longitudinal sampling designs use the minimum numbers of meters required to report yearly savings at the 90% confidence and 10% relative precision level for duration of the project (up to 10 years) as stipulated by the CDM. Improvements to the existing model include a new non-linear Compact Fluorescent Lamp population decay model based on the Polish Efficient Lighting Project, and a cumulative sampling function modified to weight samples exponentially by recency. An economic model altering the cost function to a net present value calculation is also incorporated. The search space for such sampling models is investigated and found to be discontinuous and stepped, requiring a heuristic for optimisation; in this case the Genetic Algorithm was used. Assuming an exponential smoothing rate of 0.25, an inflation rate of 6.44%, and an interest rate of 10%, results show that sampling should be more evenly distributed over the study duration than is currently considered optimal, and that the proposed improvements in model accuracy increase monitoring costs by 21.4% in present value terms.
Due to the wide applications of solar photovoltaic (PV) technology, safe operation and maintenance of the installed solar panels become more critical as there are potential menaces such as hot spot effects and DC arcs, which may cause fire accidents to the solar panels. In order to minimize the risks of fire accidents in large scale applications of solar panels, this review focuses on the latest techniques for reducing hot spot effects and DC arcs. The risk mitigation solutions mainly focus on two aspects: structure reconfiguration and faulty diagnosis algorithm. The first is to reduce the hot spot effect by adjusting the space between two PV modules in a PV array or relocate some PV modules. The second is to detect the DC arc fault before it causes fire. There are three types of arc detection techniques, including physical analysis, neural network analysis, and wavelet detection analysis. Through these detection methods, the faulty PV cells can be found in a timely manner thereby reducing the risk of PV fire. Based on the review, some precautions to prevent solar panel related fire accidents in large-scale solar PV plants that are located adjacent to residential and commercial areas.
The energy savings achieved by implementing energy efficiency (EE) lighting retrofit projects are sometimes not sustainable and vanish rapidly given that lamp population decays as time goes by if without proper maintenance activities. Scope of maintenance activities refers to replacements of failed lamps due to nonrepairable lamp burnouts. Full replacements of all the failed lamps during each maintenance interval contribute to a tight project budget due to the expense for the lamp failure inspections, as well as the procurement and installation of new lamps. Since neither "no maintenance" nor "full maintenance" is preferable to the EE lighting project developers (PDs), we propose to design an optimal maintenance plan that optimises the number of replacements of the failed lamps, such that the EE lighting project achieves sustainable performance in terms of energy savings whereas the PDs obtain their maximum benefits in the sense of cost-benefit ratio. This optimal maintenance planning (OMP) problem is aptly formulated as an optimal control problem under control system framework, and solved by a model predictive control (MPC) approach. An optimal maintenance plan for an EE lighting retrofit project is designed as a case study to illustrate the effectiveness of the proposed control system approach.
Clean development mechanism (CDM) project developers are always interested in achieving required measurement accuracies with the least metering cost. In this paper, a metering cost minimisation model is proposed for the sampling plan of a specific CDM energy efficiency lighting project. The problem arises from the particular CDM sampling requirement of 90% confidence and 10% precision for the small-scale CDM energy efficiency projects, which is known as the 90/10 criterion. The 90/10 criterion can be met through solving the metering cost minimisation problem. All the lights in the project are classified into different groups according to uncertainties of the lighting energy consumption, which are characterised by their statistical coefficient of variance (CV). Samples from each group are randomly selected to install power meters. These meters include less expensive ones with less functionality and more expensive ones with greater functionality. The metering cost minimisation model will minimise the total metering cost through the determination of the optimal sample size at each group. The 90/10 criterion is formulated as constraints to the metering cost objective. The optimal solution to the minimisation problem will therefore minimise the metering cost whilst meeting the 90/10 criterion, and this is verified by a case study. Relationships between the optimal metering cost and the population sizes of the groups, CV values and the meter equipment cost are further explored in three simulations. The metering cost minimisation model proposed for lighting systems is applicable to other CDM projects as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.