Organ preservation has been of major importance ever since transplantation developed into a global clinical activity. The relatively simple procedures were developed on a basic comprehension of low-temperature biology as related to organs outside the body. In the past decade, there has been a significant increase in knowledge of the sequelae of effects in preserved organs, and how dynamic intervention by perfusion can be used to mitigate injury and improve the quality of the donated organs. The present review focuses on (1) new information about the cell and molecular events impacting on ischemia/reperfusion injury during organ preservation, (2) strategies which use varied compositions and additives in organ preservation solutions to deal with these, (3) clear definitions of the developing protocols for dynamic organ perfusion preservation, (4) information on how the choice of perfusion solutions can impact on desired attributes of dynamic organ perfusion, and (5) summary and future horizons.
Cervico-vaginal mucus (CVM) is a viscoelastic substance continuously produced by secretory cells of the endocervix and the vagina of cows. Its physicochemical composition varies depending on the hormonal status of the estrous cycle. In veterinary medicine refractometry is a widely diffused technique to determine total solids (TS) content of biological samples, but there are not published data of CVM total solids from refractometric measures. Refractometric TS determination contributes to the qualitative constituents analysis of CVM, additionally it is an easier and more inexpensive technique than gravimetric TS determination. The main goal of the present paper was to validate a refractometric method to estimate TS concentration of the soluble fraction of CVM samples. Samples were collected from seventy-three Holando Argentino cows of Santa Fe province farms in Argentina. Cows were classified in three experimental groups: healthy, subclinical (SE) and clinical endometritis (CE) group. To achieve a solubilisation protocol for CVM samples, four Triton™ X-100 concentrations were tested. Refractive index (RI) and gravimetric total solid (gTS) concentration of solubilised samples were determined for the three experimental groups. A mathematical equation was determined with the experimental data from the healthy group, in order to obtain calculated total solid concentration (cTS) from refractivity (R) values. To validate the RI method for CVM samples, cTS concentrations were compared with gTS concentrations from endometritis group samples. Triton™ X-100 0.01% (V/V) improved CVM samples handling and did not change physicochemical parameters (gTS, Na þ and K þ concentration, and RI values). The linear regression equation obtained was: cTS (g/ dL) ¼ (R -0.67)/16.2, r 2 ¼ 0.91. Correlation between gTS and cTS concentration was: r ¼ 0.97 for SE group and r ¼ 0.97 for CE group. The homogenization protocol allowed the measurement of physicochemical parameters without altering their values. A high correlation coefficient between cTS and gTS postulates refractometry as an accurate method to determine TS concentration for solubilised CVM samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.