Serotonin transporter (SERT) plays a critical role in regulating extracellular availability of serotonin (5-HT) in the gut and brain. Mice with deletion of SERT develop metabolic syndrome as they age. Changes in the gut microbiota are being increasingly implicated in Metabolic Syndrome and Diabetes. To investigate the relationship between the gut microbiome and SERT, this study assessed the fecal and cecal microbiome profile of 11 to 12 week-old SERT+/+ and SERT−/− mice. Microbial DNA was isolated, processed for metagenomics shotgun sequencing, and taxonomic and functional profiles were assessed. 34 differentially abundant bacterial species were identified between SERT+/+ and SERT−/−. SERT−/− mice displayed higher abundances of Bacilli species including genera Lactobacillus, Streptococcus, Enterococcus, and Listeria. Furthermore, SERT−/− mice exhibited significantly lower abundances of Bifidobacterium species and Akkermansia muciniphilia. Bacterial community structure was altered in SERT−/− mice. Differential abundance of bacteria was correlated with changes in host gene expression. Bifidobacterium and Bacilli species exhibited significant associations with host genes involved in lipid metabolism pathways. Our results show that SERT deletion is associated with dysbiosis similar to that observed in obesity. This study contributes to the understanding as to how changes in gut microbiota are associated with metabolic phenotype seen in SERT deficiency.
The combination of 20 mol % of copper iodide and lithium tert-butoxide triggers the formation of a broad range of substituted, functionalized α-alkoxy 2H-naphthalenones from readily available N-tosylhydrazones. The data suggests that this transformation occurs through cycloaddition of a copper carbenoid with an ester, followed by a Lewis acid-catalyzed [1,2] alkyl shift of the in situ generated alkoxyepoxide intermediate.
Many perinatal characteristics are associated with risk for pediatric asthma. Identification of biologic processes influenced by these characteristics could facilitate risk stratification or new therapeutic targets. We hypothesized that transcriptional changes associated with multiple epidemiologic risk factors would be mediators of pediatric asthma risk. Using publicly available transcriptomic data from cord blood mononuclear cells, transcription of genes involved in myeloid differentiation were inversely associated with pediatric asthma risk stratification based on multiple perinatal risk factors. This gene signature was validated in an independent prospective cohort and was specifically associated with genes localizing to neutrophil specific granules. Changes in these genes correlated with changes in protein abundance in serum. Umbilical cord blood serum concentration of PGLYRP-1, a specific granule protein, was inversely associated with mid-childhood current asthma and early-teen FEV1/FVCx100. Thus, neutrophil specific granule abundance at birth may predict individual risk for pediatric asthma and pulmonary function in adolescence.
The combination of 20 mol % of copper iodide and lithium tert‐butoxide triggers the formation of a broad range of substituted, functionalized α‐alkoxy 2H‐naphthalenones from readily available N‐tosylhydrazones. The data suggests that this transformation occurs through cycloaddition of a copper carbenoid with an ester, followed by a Lewis acid‐catalyzed [1,2] alkyl shift of the in situ generated alkoxyepoxide intermediate.
There are perinatal characteristics, such as gestational age, reproducibly associated with risk for pediatric asthma. Identification of biologic processes influenced by these characteristics could facilitate risk stratification or new therapeutic targets. We hypothesized that transcriptional changes associated with multiple epidemiologic risk factors would be mediators of pediatric asthma risk. Using publicly available transcriptomic data from cord blood mononuclear cells, transcription of genes involved in myeloid differentiation were observed to be inversely associated with a pediatric asthma risk stratification based on multiple perinatal risk factors. This gene signature was validated in an independent prospective cohort and was specifically associated with genes localizing to neutrophil specific granules. Further validation demonstrated that umbilical cord blood serum concentration of PGLYRP-1, a specific granule protein, was inversely associated with mid-childhood current asthma and early-teen FEV1/FVCx100. Thus, neutrophil specific granule abundance at birth predicts risk for pediatric asthma and pulmonary function in adolescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.