Selenium (Se) is considered a beneficial element for plants; however, in high concentrations, it causes negative effects on plant physiology and development. This study reports the first physiological, nutritional, and ultrastructural description of Se toxicity in cowpea growing under field conditions. Selenium was supplied as a foliar application of sodium selenite at varying concentrations (0, 50, 100, 200, 400, 800, 1200, and 1600 g ha −1). An increased yield was observed with the application of 50 g ha −1 Se. Application of concentrations higher than 50 g ha −1 caused leaf toxicity. Increased lipid peroxidation and hydrogen peroxide concentration and reduced total sugars, sucrose, and carotenoid concentration were observed at highest doses tested (1200 and 1600 g ha −1). Applications of more than 50 g ha −1 Se reduced the phloem diameter, caused chlorosis of the leaf blade with a coalescence of lesions, and caused pink salt deposits to appear. Lesions were observed mainly near the trichomes on the adaxial surface of the leaf blade. An analysis of the element distribution with microprobe Xray fluorescence spectrometry (μ-XRF) revealed accumulation of Se, calcium (Ca), potassium (K), copper (Cu), and manganese (Mn) near the primary vein and in the necrotic brown areas of the leaf lesions. In contrast, Na was homogeneously distributed in the leaf tissue.
BACKGROUND Selenium (Se) is a nutrient for animals and humans, and is considered beneficial to higher plants. Selenium concentrations are low in most soils, which can result in a lack of Se in plants, and consequently in human diets. Phytic acid (PA) is the main storage form of phosphorus in seeds, and it is able to form insoluble complexes with essential minerals in the monogastric gut. This study aimed to establish optimal levels of Se application to cowpea, with the aim of increasing Se concentrations. The efficiency of agronomic biofortification was evaluated by the application of seven levels of Se (0, 2.5, 5, 10, 20, 40, and 60 g ha−1) from two sources (selenate and selenite) to the soil under field conditions in 2016 and 2017. RESULTS Application of Se as selenate led to greater plant Se concentrations than application as selenite in both leaves and grains. Assuming human cowpea consumption of 54.2 g day−1, Se application of 20 g ha−1 in 2016 or 10 g ha−1 in 2017 as selenate would have provided a suitable daily intake of Se (between 20 and 55 μg day−1) for humans. Phytic acid showed no direct response to Se application. CONCLUSION Selenate provides greater phytoavailability than selenite. The application of 10 g Se ha−1 of selenate to cowpea plants could provide sufficient seed Se to increase daily human intake by 13–14 μg d−1. © 2019 Society of Chemical Industry
The use of growth regulators as a technique that can reduce plant height and thus strengthen stalks, which may be an option to eliminate or reduce plant lodging, thereby avoiding crop loss. However, there is a lack of information on the subject. The purpose of this study was to evaluate the effect of the dose (0; 37.5; 75.0; 112.5 e 150.0 g ha -1 active ingredient) and the application times of trinexapac-ethyl (sixth, seventh and eighth leaves), in a randomized complete block, in a 5x3 factorial scheme, with four replicates. The field experiment was performed during the 2016/17 crop season, in the experimental farm located in Selvíria,
The agricultural use of arbuscular mycorrhizal fungi, such as Rhizoglomus intraradices, can increase the efficiency of phosphate fertilization for the benefit of the corn plant and grain nutrition. In this study, a field experiment was conducted in an area of Selvíria/MS, Brazil, in the years 2019 and 2020, to verify the effects of reduced doses of phosphorus combined with the inoculation of corn seed with R. intraradices on corn plant growth and grain nutrient contents. The experiment was laid in a randomized block design in subdivided plots with four repetitions and twenty treatments resulting from combining five doses of P2O5 (0%, 25%, 50%, 75%, and 100% of the recommended dose) with four doses (0, 60, 120, and 180 g ha−1) of an inoculant containing R. intraradices. Leaf and kernel macro- and micronutrient contents were evaluated. The foliar P content in 2020 was a function of the interaction between phosphate fertilization and AMF inoculation, with the highest leaf P content observed at the 100% of P2O5 combined with AMF inoculation between 120 and 140 g ha−1. In the grains Mg content, an interaction was observed between the two factors in 2020 and the response surface, showing that the highest Mg content was obtained when maximum doses of P2O5 and maximum doses of inoculant were combined. A response surface showed that, in 2020, the highest leaf Zn content occurred when 35–55% P2O5 is applied with no inoculation and when P2O5 is limited to 20–30%, and there is inoculation with doses between 90 and 150 g ha−1. Phosphate fertilization increased foliar K (2019) and Mg (2020) contents, with maximum points at doses of 76.57% and 88.80%, respectively.
The painting of sports turfs with colorants is a common practice, with the main objective to maintain grass appearance for maximum aesthetic quality. Colorants are used to provide green color to grasses during periods of stress and dormancy and are considered an alternative for warm weather grasses during the winter months. Recent increases in the use of colorants is due to water conservation efforts as well as lower operating costs compared to winter overseeding. The objective of this study was to evaluate durability and doses of organic colorant in terms of visual quality of DiscoveryTM bermudagrass. The experiment was installed in the field, subdivided into plots of DiscoveryTM bermudagrass treated with lawn-specific commercial, organic colorant as follows 0 ml L-1 (Control); 33 ml L-1; 50 ml L-1; 66.6 ml L-1 (manufacturer’s recommendation); 83 ml L-1; 100 ml L-1. At 10 day intervals the green color index, reflectance, normalized difference vegetation index (NDVI), and digital images were measured and assessed. The results indicate that, given the durability of the product, doses between 66.6 and 83.3 ml L-1 are recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.