The SDH enzyme activity revealed that the number of laser applications increases the metabolic pattern of the muscle fibers. A minimal difference in metabolic activity between six and 10 applications of a laser suggests that further analyses should be done to confirm that six applications are enough to produce the same clinical effects, thereby contributing data to professionals from different fields in regard to the cost-benefit ratio of this therapy.
Low-level laser therapy (LLLT) has been widely used in the treatment of the stomatognathic system dysfunction; however, its biological effect remains poorly understood. This study evaluated the effect of LLLT (GaAlAs, 780 nm, 20 J/cm(2), 40 mW) on masseter muscle of HRS/J mice after different numbers of laser irradiations (three, six, and ten) for 20 s in alternate days. Three experimental groups were defined according to the number of laser irradiations and three control groups (n=5) were used. On the third day after the last irradiation, all animals were killed and the masseter muscle was removed and processed for the following analysis: (a) transmission electron microscopy, (b) zymography, (c) immunohistochemistry for vascular endothelial growth factor (VEGF) and VEGFR-2. The results showed: (a) with six laser applications, a dilation of T tubules, and sarcoplasmic reticulum cistern, increased pinocytosed vesicles in the endothelium; with ten laser applications, few pinocytic vesicles in the endothelium and condensed mitochondria. (b) Under the conditions of this study, the synthesis of other matrix metalloproteinases was not observed, only the MMP-2 and -9. (c) After ten laser irradiations, immunostaining was observed only for VEGFR-2. We conclude that after six laser applications, ultrastructural changes may facilitate the Ca(+2) transfer to cytosol and increase the fluid transport from one surface to another. The ultrastructural changes and no immunostaining for VEGF with ten applications may decrease the metabolic activity as well as damage the angiogenic process, suggesting that an effective number of laser applications may be less than ten, associating to this therapy a better cost-benefit.
It is not well-understood how low-laser therapy affects the skin of the applied area. This study analyzes skin of the masseteric region of mice from the HRS/J strain after three different application regimens (three, six or ten applications per regimen) of low intensity laser at 20 J/cm 2 and 40 mW for 20 sec on alternate days. Three experimental groups according to the number of laser applications (three, six or ten) and three control groups (N ¼ 5 animals for each group) were used. On the third day after the last irradiation, all animals were sacrificed and the skin was removed and processed to analyze the relative occupation of the test area by each epithelial layer and the aspects of neovascularization. Data were submitted to statistical analyzes. The irradiated groups compared to their respective controls at each period of time, showed no significant difference in relative occupation of the test area by the layers and epithelium areas for three and six applications, but for ten applications, a significant decrease (P < 0.05) in the basal and granulosum layers, and epithelium areas were found. From the comparisons of the three irradiated groups together, the group with six laser applications showed statistical difference (P < 0.05) in total epithelium and on the layers. Vascular endothelial growth factor (VEGF) and VEGFR-2 immunoreactivities were similar for the control and irradiated groups. Results suggested a biostimulatory effect with low risks associated with superficial tissues, when the treatment aims the deeper layers after six applications. Anat Rec, 294:1592Rec, 294: -1600Rec, 294: , 2011. V V C 2011 Wiley-Liss, Inc.
Low level laser therapy (LLLT) has been used to relieve pain, inflammation, and wound healing processes. Thus, the skin is overexposed to laser and this effect is not completely understood. This study analyzed the effects of the number of laser applications (three, six, and 10) on the intact skin of the masseteric region in mice of strain HRS/J. The animals (n = 30) were equally divided into control (0 J/cm2) and irradiated (20 J/cm2), and each of these groups was further equally divided according to the number of laser applications (three, six, and 10) and underwent LLLT on alternate days. Samples were analyzed by light microscopy and transmission electron microscope (TEM). The animals receiving applications exhibited open channels more dilated between the keratinocytes and photobiomodulation effect on endothelial cells and fibroblasts by TEM. Under the light microscope after 10 laser applications, the type I collagen decreased (P < 0.05) compared to the three and six applications. Under these experimental conditions, all numbers of applications provided photobiomodulatory effect on the epidermis and dermis, without damage. More studies are needed to standardize the energy density and number of applications recommended for laser therapy to have a better cost-benefit ratio associated with treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.