The temporal relationship between individual pieces of information from the different sensory modalities is one of the stronger cues to integrate such information into a unified perceptual gestalt, conveying numerous perceptual and behavioral advantages. Temporal acuity, however, varies greatly over the life span. It has previously been hypothesized that changes in temporal acuity in both development and healthy aging may thus play a key role in integrative abilities. This study tested the temporal acuity of 138 individuals ranging in age from 5 to 80. Temporal acuity and multisensory integration abilities were tested both within and across modalities (audition and vision) with simultaneity judgment and temporal order judgment tasks. We observed that temporal acuity, both within and across modalities, improved throughout development into adulthood and subsequently declined with healthy aging, as did the ability to integrate multisensory speech information. Of importance, throughout development, temporal acuity of simple stimuli (i.e., flashes and beeps) predicted individuals' abilities to integrate more complex speech information. However, in the aging population, although temporal acuity declined with healthy aging and was accompanied by declines in integrative abilities, temporal acuity was not able to predict integration at the individual level. Together, these results suggest that the impact of temporal acuity on multisensory integration varies throughout the life span. Although the maturation of temporal acuity drives the rise of multisensory integrative abilities during development, it is unable to account for changes in integrative abilities in healthy aging. The differential relationships between age, temporal acuity, and multisensory integration suggest an important role for experience in these processes. (PsycINFO Database Record
Previous work has established that the spatial receptive fields (SRFs) of multisensory neurons in the cerebral cortex are strikingly heterogeneous, and that SRF architecture plays an important deterministic role in sensory responsiveness and multisensory integrative capacities. The initial part of this contribution serves to review these findings detailing the key features of SRF organization in cortical multisensory populations by highlighting work from the cat anterior ectosylvian sulcus (AES). In addition, we have recently conducted parallel studies designed to examine SRF architecture in the classic model for multisensory studies, the cat superior colliculus (SC), and we present some of the preliminary observations from the SC here. An examination of individual SC neurons revealed marked similarities between their unisensory (i.e., visual and auditory) SRFs, as well as between these unisensory SRFs and the multisensory SRF. Despite these similarities within individual neurons, different SC neurons had SRFs that ranged from a single area of greatest activation (hot spot) to multiple and spatially discrete hot spots. Similar to cortical multisensory neurons, the interactive profile of SC neurons was correlated strongly to SRF architecture, closely following the principle of inverse effectiveness. Thus, large and often superadditive multisensory response enhancements were typically seen at SRF locations where visual and auditory stimuli were weakly effective. Conversely, subadditive interactions were seen at SRF locations where stimuli were highly effective. Despite the unique functions characteristic of cortical and subcortical multisensory circuits, our results suggest a strong mechanistic interrelationship between SRF microarchitecture and integrative capacity. Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. NIH Public Access An introduction to multisensory interactionsOur environment is comprised of myriad sensory cues that are constantly changing along numerous dimensions (e.g., space, effectiveness, etc.). As a consequence of the dynamic nature of our sensory world, the nervous system is continually challenged with resolving the inherent ambiguities that result from these competing stimulus complexes in order to generate directed action and create veridical percepts. To accomplish this task, the brain has to correctly identify whether sensory energies propagated in different domains (e.g., light, sound, etc.) belong to a single event or are derived from several discrete events. Specialized structures, including the midbrain superior colliculus (SC), have e...
Behavioral states such as arousal and attention have profound effects on sensory processing, determining how-even whether-a stimulus is perceived. This state-dependence is believed to arise, at least in part, in response to inputs from subcortical structures that release neuromodulators such as acetylcholine, often nonsynaptically. The mechanisms that underlie the interaction between these nonsynaptic signals and the more point-to-point synaptic cortical circuitry are not well understood. This review highlights the state of the field, with a focus on cholinergic action in early visual processing. Key anatomical and physiological features of both the cholinergic and the visual systems are discussed. Furthermore, presenting evidence of cholinergic modulation in visual thalamus and primary visual cortex, we explore potential functional roles of acetylcholine and its effects on the processing of visual input over the sleep-wake cycle, sensory gain control during wakefulness, and consider evidence for cholinergic support of visual attention. K E Y W O R D SLGN, macaque, neuromodulation, primate, V1, visual cortex
Purpose Previous work has established that the integrative capacity of multisensory neurons in the superior colliculus (SC) matures over a protracted period of postnatal life (Wallace and Stein, 1997), and that the development of normal patterns of multisensory integration depends critically on early sensory experience (Wallace et al., 2004). Although these studies demonstrated the importance of early sensory experience in the creation of mature multisensory circuits, it remains unknown whether the reestablishment of sensory experience in adulthood can reverse these effects and restore integrative capacity. Methods The current study tested this hypothesis in cats that were reared in absolute darkness until adulthood and then returned to a normal housing environment for an equivalent period of time. Single unit extracellular recordings targeted multisensory neurons in the deep layers of the SC, and analyses were focused on both conventional measures of multisensory integration and on more recently developed methods designed to characterize spatiotemporal receptive fields (STRF). Results Analysis of the STRF structure and integrative capacity of multisensory SC neurons revealed significant modifications in the temporal response dynamics of multisensory responses (e.g., discharge durations, peak firing rates, and mean firing rates), as well as significant changes in rates of spontaneous activation and degrees of multisensory integration. Conclusions These results emphasize the importance of early sensory experience in the establishment of normal multisensory processing architecture and highlight the limited plastic potential of adult multisensory circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.