The OntoSPM Collaborative Action has been in operation for 24 months, with a growing dedicated membership. Its main result is a modular ontology, undergoing constant updates and extensions, based on the experts' suggestions. It remains an open collaborative action, which always welcomes new contributors and applications.
An effective modeling of the cataract intervention is possible using the combination of BPM and ACM. The combination gives the possibility to depict complex processes with complex decisions. This combination allows a significant advantage for modeling perioperative processes.
Purpose In the context of aviation and automotive navigation technology, assistance functions are associated with predictive planning and wayfinding tasks. In endoscopic minimally invasive surgery, however, assistance so far relies primarily on image-based localization and classification. We show that navigation workflows can be described and used for the prediction of navigation steps. Methods A natural description vocabulary for observable anatomical landmarks in endoscopic images was defined to create 3850 navigation workflow sentences from 22 annotated functional endoscopic sinus surgery (FESS) recordings. Resulting FESS navigation workflows showed an imbalanced data distribution with over-represented landmarks in the ethmoidal sinus. A transformer model was trained to predict navigation sentences in sequence-to-sequence tasks. The training was performed with the Adam optimizer and label smoothing in a leave-one-out cross-validation study. The sentences were generated using an adapted beam search algorithm with exponential decay beam rescoring. The transformer model was compared to a standard encoder-decoder-model, as well as HMM and LSTM baseline models. Results The transformer model reached the highest prediction accuracy for navigation steps at 0.53, followed by 0.35 of the LSTM and 0.32 for the standard encoder-decoder-network. With an accuracy of sentence generation of 0.83, the prediction of navigation steps at sentence-level benefits from the additional semantic information. While standard class representation predictions suffer from an imbalanced data distribution, the attention mechanism also considered underrepresented classes reasonably well. Conclusion We implemented a natural language-based prediction method for sentence-level navigation steps in endoscopic surgery. The sentence-level prediction method showed a potential that word relations to navigation tasks can be learned and used for predicting future steps. Further studies are needed to investigate the functionality of path prediction. The prediction approach is a first step in the field of visuo-linguistic navigation assistance for endoscopic minimally invasive surgery.
BackgroundMedical personnel in hospitals often works under great physical and mental strain. In medical decision-making, errors can never be completely ruled out. Several studies have shown that between 50 and 60% of adverse events could have been avoided through better organization, more attention or more effective security procedures. Critical situations especially arise during interdisciplinary collaboration and the use of complex medical technology, for example during surgical interventions and in perioperative settings (the period of time before, during and after surgical intervention).MethodsIn this paper, we present an ontology and an ontology-based software system, which can identify risks across medical processes and supports the avoidance of errors in particular in the perioperative setting. We developed a practicable definition of the risk notion, which is easily understandable by the medical staff and is usable for the software tools. Based on this definition, we developed a Risk Identification Ontology (RIO) and used it for the specification and the identification of perioperative risks.ResultsAn agent system was developed, which gathers risk-relevant data during the whole perioperative treatment process from various sources and provides it for risk identification and analysis in a centralized fashion. The results of such an analysis are provided to the medical personnel in form of context-sensitive hints and alerts. For the identification of the ontologically specified risks, we developed an ontology-based software module, called Ontology-based Risk Detector (OntoRiDe).ConclusionsAbout 20 risks relating to cochlear implantation (CI) have already been implemented. Comprehensive testing has indicated the correctness of the data acquisition, risk identification and analysis components, as well as the web-based visualization of results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.