Epilepsy is one of the most common neurological disorders, which occurs due to the instability in the inhibitory and excitatory synaptic transmissions in the brain. However, many patients develop resistance to the available drugs, which results in cell degeneration caused due to inadequate control of the seizures. Curcumin, Curcuma longa, is known to be effective for the treatment of organic disorders and may prevent seizures, reduce oxidative stress, and decrease brain damage. Given this, the present study evaluated the antiepileptic effects of C. longa in comparison with both the diazepam and the combined application of these two substances, in terms of their effects on the brain activity and the potential histopathological changes in the hippocampus. This study used male Wistar rats (age: 10–12 weeks; weight: 260 ± 20 g), which were pretreated for 4 days with either saline, C. longa, diazepam, or C. longa + diazepam; and on the fifth day, pentylenetetrazol (PTZ) was administered to induce the seizure. In the C. longa group, a significant increase was observed in the latency of the onset of seizure-related behavior. Surprisingly, however, the combined treatment resulted in the best control of the seizure-related behavior, with the greatest latency of the onset of spasms and isolated clonic seizures. This group also obtained the best results in the electroencephalographic trace and seizure control, with a reduction in the frequency and amplitude of the spike-waves. In the saline group, PTZ significantly reduced the number of cells present in the CA1 and CA3 regions of the hippocampus, while the combined treatment obtained the best results in terms of the preservation of the neuron-like cells. These findings indicate that C. longa may contribute to the control of both seizures and the cell damage induced by PTZ, and that its association with diazepam may be a potentially effective option for the treatment of epilepsy in the future.
Low plasma levels of vitamin D causes bone mineral change that can precipitate osteopenia and osteoporosis, and could aggravate autoimmune diseases, hypertension and diabetes. The demand for vitamin D supplementation becomes necessary; however, the consumption of vitamin D is not without risks, which its toxicity could have potentially serious consequences related to hypervitaminosis D, such as hypercalcemia and cerebral alterations. Thus, the present study describes the electroencephalographic changes caused by supraphysiological doses of vitamin D in the brain electrical dynamics, and the electrocardiographic changes. After 4 days of treatment with vitamin D at dose of 25,000 IU/Kg, the serum calcium levels found was increased in comparison with control group. The ECoG analysis found a reduction in wave activity in the delta, theta, alpha and beta frequency bands. For ECG was observed changes with shortened QT follow-up, which could be related to serum calcium concentration. This study presented important evidence about the cerebral and cardiac alterations caused by high doses of vitamin D, indicating valuable parameters in the screening and decision-making process for diagnosing patients with symptoms suggestive of intoxication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.