Climate change introduces substantial uncertainty to water resources planning and raises the key question: when, or under what conditions, should adaptation occur? A number of recent studies aim to identify policies mapping future observations to actions—in other words, framing climate adaptation as an optimal control problem. This paper uses the control paradigm to review and classify recent dynamic planning studies according to their approaches to uncertainty characterization, policy structure, and solution methods. We propose a set of research gaps and opportunities in this area centered on the challenge of characterizing uncertainty, which prevents the unambiguous application of control methods to this problem. These include exogenous uncertainty in forcing, model structure, and parameters propagated through a chain of climate and hydrologic models; endogenous uncertainty in human‐environmental system dynamics across multiple scales; and sampling uncertainty due to the finite length of historical observations and future projections. Recognizing these challenges, several opportunities exist to improve the use of control methods for climate adaptation, namely, how problem context and understanding of climate processes might assist with uncertainty quantification and experimental design, out‐of‐sample validation and robustness of optimized adaptation policies, and monitoring and data assimilation, including trend detection, Bayesian inference, and indicator variable selection. We conclude with a summary of recommendations for dynamic water resources planning under climate change through the lens of optimal control.
Managing water resources systems requires coordinated operation of system infrastructure to mitigate the impacts of hydrologic extremes while balancing conflicting multisectoral demands. Traditionally, recommended management strategies are derived by optimizing system operations under a single problem framing that is assumed to accurately represent the system objectives, tacitly ignoring the myriad of effects that could arise from simplifications and mathematical assumptions made when formulating the problem. This study illustrates the benefits of a rival framings framework in which analysts instead interrogate multiple competing hypotheses of how complex water management problems should be formulated. Analyzing rival framings helps discover unintended consequences resulting from inherent biases of alternative problem formulations. We illustrate this on the monsoonal Red River basin in Vietnam by optimizing operations of the system's four largest reservoirs under several different multiobjective problem framings. In each rival framing, we specify different quantitative representations of the system's objectives related to hydropower production, agricultural water supply, and flood protection of the capital city of Hanoi. We find that some formulations result in counterintuitive behavior. In particular, policies designed to minimize expected flood damages inadvertently increase the risk of catastrophic flood events in favor of hydropower production, while min‐max objectives commonly used in robust optimization provide poor representations of system tradeoffs due to their instability. This study highlights the importance of carefully formulating and evaluating alternative mathematical abstractions of stakeholder objectives describing the multisectoral water demands and risks associated with hydrologic extremes.
Managing socio-ecological systems is a challenge wrought by competing societal objectives, deep uncertainties, and potentially irreversible tipping points. A classic, didactic example is the shallow lake problem in which a hypothetical town situated on a lake must develop pollution control strategies to maximize its economic benefits while minimizing the probability of the lake crossing a critical phosphorus (P) threshold, above which it irreversibly transitions into a eutrophic state. Here, we explore the use of direct policy search (DPS) to design robust pollution control rules for the town that account for deeply uncertain system characteristics and conflicting objectives. The closed loop control formulation of DPS improves the quality and robustness of key management tradeoffs, while dramatically reducing the computational complexity of solving the multi-objective pollution control problem relative to open loop control strategies. These insights suggest DPS is a promising tool for managing socioecological systems with deeply uncertain tipping points.
Multireservoir systems require robust and adaptive control policies capable of managing hydroclimatic variability and human demands across a range of time scales. This is especially true for river basins with high intraannual and interannual variability, such as monsoonal systems that need to buffer against seasonal droughts while also managing extreme floods. Moreover, the timing, intensity, duration, and frequency of these hydrologic extremes may evolve with deeply uncertain changes in socioeconomic and climatic pressures. This study contributes an innovative method for exploring how possible changes in the timing and magnitude of the monsoonal cycle impact the robustness of reservoir operating policies designed assuming stationary hydrologic and socioeconomic conditions. We illustrate this analysis on the Red River basin in Vietnam, where reservoirs and dams serve as important sources of hydropower production, multisectoral water supply, and flood protection for the capital city of Hanoi. Applying our scenario discovery approach, we find that reservoir operations designed assuming stationarity provide robust hydropower performance in the Red River but that increased mean streamflow, amplification of the within‐year monsoonal cycle, and increased interannual variability all threaten their ability to manage flood risk. Additionally, increased agricultural water demands can only be tolerated if they are accompanied by greater mean flow, exacerbating food‐flood trade‐offs in the basin. These findings highlight the importance of exploring the impacts of a wide range of deeply uncertain socioeconomic and hydrologic factors when evaluating system robustness in monsoonal river basins, considering in particular both lower‐order moments of annual streamflow and intraannual monsoonal behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.