This study sheds new light on the way that group B
Streptococcus
(GBS) defends itself against oxidative stress in the infected host. The enzyme encoded by the GBS gene
npx
is an NADH peroxidase that, our study reveals, provides defense against macrophage-derived reactive oxygen stress and facilitates infections of the uterus during pregnancy. This enzyme could represent a tractable target for future treatment strategies against invasive GBS infections.
Group B Streptococcus (GBS) is an encapsulated Gram‐positive bacterial pathogen that causes severe perinatal infections. Human milk oligosaccharides (HMOs) are short‐chain sugars that have recently been shown to possess antimicrobial and anti‐biofilm activity against a variety of bacterial pathogens, including GBS. We have expanded these studies to demonstrate that HMOs can inhibit and dismantle biofilm in both invasive and colonizing strains of GBS. A cohort of 30 diverse strains of GBS were analyzed for susceptibility to HMO‐dependent biofilm inhibition or destruction. HMOs were significantly effective at inhibiting biofilm in capsular‐type‐ and sequence‐type‐specific fashion, with significant efficacy in CpsIb, CpsII, CpsIII, CpsV, and CpsVI strains as well as ST‐1, ST‐12, ST‐19, and ST‐23 strains. Interestingly, CpsIa as well as ST‐7 and ST‐17 were not susceptible to the anti‐biofilm activity of HMOs, underscoring the strain‐specific effects of these important antimicrobial molecules against the perinatal pathogen Streptococcus agalactiae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.