Given the growing evidence that gut dysfunction, including changes in gut microbiota composition, plays a critical role in the development of inflammation and metabolic diseases, the identification of novel probiotic bacteria with immunometabolic properties has recently attracted more attention. Herein, bacterial strains were first isolated from dairy products and human feces and then screened in vitro for their immunomodulatory activity. Five selected strains were further analyzed in vivo, using a mouse model of diet‐induced obesity. C57BL/6 mice were fed a high‐fat high‐sucrose diet, in combination with 1 of 3 Lactobacillus strains (Lb38, L. plantarum; L79, L. paracaseil casei; Lbl02, L. rhamnosus) or Bifidobacterium strains (Bf26, Bfl41, 2 different strains of B. animalis ssp. lactis species) administered for 8 wk at 109 colony‐forming units/d. Whereas 3 strains showed only modest (Lb38, Bf26) or no (L79) effects, Lbl02 and Bfl41 reduced diet‐induced obesity, visceral fat accretion, and inflammation, concomitant with improvement of glucose tolerance and insulin sensitivity. Further analysis revealed that Lbl02 and Bf141 enhanced intestinal integrity markers in association with selective changes in gut microbiota composition. We have thus identified 2 new potential probiotic bacterial strains with immunometabolic properties to alleviate obesity development and associated metabolic disturbances.—Le Barz, M., Daniel, N., Varin, T. V., Naimi, S., Demers‐Mathieu, V., Pilon, G., Audy, J., Laurin, E., Roy, D., Urdaci, M. C., St‐Gelais, D., Fliss, I, Marette, A. In vivo screening of multiple bacterial strains identifies Lactobacillus rhamnosus Lbl02 and Bifidobacterium animalis ssp. lactis Bf 141 as probiotics that improve metabolic disorders in a mouse model of obesity. FASEB J. 33, 4921—4935 (2019). http://www.fasebj.org
A commercially available product containing three probiotic bacterial strains (Lactobacillus helveticus R0052, Bifidobacterium longum subsp. infantis R0033, and Bifidobacterium bifidum R0071) was previously shown in animal trials to modulate both T H 1 and T H 2 immune responses. Clinical studies on this combination of bacteria have also shown positive health effects against seasonal winter diseases and rotavirus infection. The goal of this study was to use a well-established in vitro intestinal epithelial (HT-29) cell model that has been shown to constitutively express double-stranded RNA (dsRNA) sensors (Toll-like receptor 3 [TLR3], retinoic acid-inducible gene I, melanoma differentiation-associated gene 5, and dsRNA-activated protein kinase). By using the HT-29 cell model, we wanted to evaluate whether or not this combination of three bacteria had the capacity to immune modulate the host cell response to a dsRNA ligand, poly(I·C). Using a custom-designed, two-color expression microarray targeting genes of the human immune system, we investigated the response of HT-29 cells challenged with poly(I·C) both in the presence and in the absence of the three probiotic bacteria. We observed that the combination of the three bacteria had a major impact on attenuating the expression of genes connected to proinflammatory T H 1 and antiviral innate immune responses compared to that obtained by the poly(I·C)-only challenge. Major pathways through which the multistrain combination may be eliciting its immune-modulatory effect include the TLR3 domain-containing adapter-inducing beta interferon (TRIF), mitogenactivated protein kinase, and NF-B signaling pathways. Such a model may be useful for selecting potential biomarkers for the design of future clinical trials.
The effect of four sugars (glucose, galactose, lactose and fructose) on exopolysaccharide (EPS) production by Bifidobacterium longum subsp. longum CRC 002 was evaluated. More EPS was produced when CRC 002 was grown on lactose in the absence of pH control, with a production of 1080±120 mg EPS l "1 (P,0.01) after 24 h of incubation. For fructose, galactose and glucose, EPS production was similar, at 512±63, 564±165 and 616±93 mg EPS l "1 , respectively. The proposed repeating unit composition of the EPS is 2 galactose to 3 glucose. The effect of sugar and fermentation time on expression of genes involved in sugar nucleotide production (galK, galE1, galE2, galT1, galT2, galU, rmlA, rmlB1 and rmlCD) and the priming glycosyltransferase (wblE) was quantified using real-time reverse transcription PCR. A significantly higher transcription level of wblE (9.29-fold) and the genes involved in the Leloir pathway (galK, 4.10-fold; galT1, 2.78-fold; and galE2, 4.95-fold) during exponential growth was associated with enhanced EPS production on lactose compared to glucose. However, galU expression, linking glucose metabolism with the Leloir pathway, was not correlated with EPS production on different sugars. Genes coding for dTDP-rhamnose biosynthesis were also differentially expressed depending on sugar source and growth phase, although rhamnose was not present in the composition of the EPS. This precursor may be used in cell wall polysaccharide biosynthesis. These results contribute to understanding the changes in gene expression when different sugar substrates are catabolized by B. longum subsp. longum CRC 002.
In order to understand the appropriate use of potentially probiotic Gram-positive microbes through their introduction in the gut microbiome, it is necessary to understand the influence of individual bacteria on the host-response system at a cellular level. In the present study, we have shown that lipopolysaccharides, flagellated Gram-negative bacteria, potentially probiotic Gram-positive bacteria and yeast interact differently with human intestinal epithelial cells with a custom-designed expression microarray evaluating 17 specific host-response pathways. Only lipopolysaccharides and flagellated Gram-negative bacteria induced inflammatory response, while a subset of Gram-positive microbes had anti-inflammatory potential. The main outcome from the study was the differential regulation of the central mitogen-activated protein kinase signalling pathway by these Gram-positive microbes versus commensal/pathogenic Gram-negative bacteria. The microarray was efficient to highlight the impact of individual bacteria on the response of intestinal epithelial cells, but quantitative real-time polymerase chain reaction validation demonstrated some underestimation for down-regulated genes by the microarray. This immune array will allow us to better understand the mechanisms underlying microbe-induced host immune responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.