The respiratory syncytial virus (RSV) M2-1 protein is an essential cofactor of the viral RNA polymerase complex and functions as a transcriptional processivity and antitermination factor. M2-1, which exists in a phosphorylated or unphosphorylated form in infected cells, is an RNA-binding protein that also interacts with some of the other components of the viral polymerase complex. It contains a CCCH motif, a putative zinc-binding domain that is essential for M2-1 function, at the N terminus. To gain insight into its structural organization, M2-1 was produced as a recombinant protein in Escherichia coli and purified to >95% homogeneity by using a glutathione S-transferase (GST) tag. The GST-M2-1 fusion proteins were copurified with bacterial RNA, which could be eliminated by a high-salt wash. Circular dichroism analysis showed that M2-1 is largely ␣-helical. Chemical cross-linking, dynamic light scattering, sedimentation velocity, and electron microscopy analyses led to the conclusion that M2-1 forms a 5.4S tetramer of 89 kDa and ϳ7.6 nm in diameter at micromolar concentrations. By using a series of deletion mutants, the oligomerization domain of M2-1 was mapped to a putative ␣-helix consisting of amino acid residues 32 to 63. When tested in an RSV minigenome replicon system using a luciferase gene as a reporter, an M2-1 deletion mutant lacking this region showed a significant reduction in RNA transcription compared to wild-type M2-1, indicating that M2-1 oligomerization is essential for the activity of the protein. We also show that the region encompassing amino acid residues 59 to 178 binds to P and RNA in a competitive manner that is independent of the phosphorylation status of M2-1.
The influenza A virus PB1-F2 protein, encoded by an alternative reading frame in the PB1 polymerase gene, displays a high sequence polymorphism and is reported to contribute to viral pathogenesis in a sequence-specific manner. To gain insights into the functions of PB1-F2, the molecular structure of several PB1-F2 variants produced in Escherichia coli was investigated in different environments. Circular dichroism spectroscopy shows that all variants have a random coil secondary structure in aqueous solution. When incubated in trifluoroethanol polar solvent, all PB1-F2 variants adopt an ␣-helix-rich structure, whereas incubated in acetonitrile, a solvent of medium polarity mimicking the membrane environment, they display -sheet secondary structures. Incubated with asolectin liposomes and SDS micelles, PB1-F2 variants also acquire a -sheet structure. Dynamic light scattering revealed that the presence of -sheets is correlated with an oligomerization/aggregation of PB1-F2. Electron microscopy showed that PB1-F2 forms amorphous aggregates in acetonitrile. In contrast, at low concentrations of SDS, PB1-F2 variants exhibited various abilities to form fibers that were evidenced as amyloid fibers in a thioflavin T assay. Using a recombinant virus and its PB1-F2 knock-out mutant, we show that PB1-F2 also forms amyloid structures in infected cells. Functional membrane permeabilization assays revealed that the PB1-F2 variants can perforate membranes at nanomolar concentrations but with activities found to be sequence-dependent and not obviously correlated with their differential ability to form amyloid fibers. All of these observations suggest that PB1-F2 could be involved in physiological processes through different pathways, permeabilization of cellular membranes, and amyloid fiber formation.
The nine C-terminal amino acids of the respiratory syncytial virus protein P are necessary and sufficient for binding to ribonucleoprotein complexes in which six ribonucleotides are contacted per N protein protomer The respiratory syncytial virus (RSV) phosphoprotein (P) is a major polymerase co-factor that interacts with both the large polymerase fragment (L) and the nucleoprotein (N). The N-binding domain of RSV P has been investigated by co-expression of RSV P and N proteins in Escherichia coli. Pull-down assays performed with a series of truncated forms of P fused to glutathione S-transferase (GST) revealed that the region comprising the last nine C-terminal amino acid residues of P (233-DNDLSLEDF-241) is sufficient for efficient binding to N. Site-directed mutagenesis shows that the last four residues of this peptide are crucial for binding and must be present at the end of a flexible C-terminal tail. The presence of the P oligomerization domain (residues 100-160) was an important stabilizing factor for the interaction. The tetrameric full-length P fused to GST was able to pull down both helical and ring structures, whereas a monomeric Cterminal fragment of P (residues 161-241) fused to GST pulled down exclusively RNA-N rings. Electron-microscopy analysis of the purified rings showed the presence of two types of complex: undecamers (11N) and decamers (10N). Mass-spectrometry analysis of the RNA extracted from rings after RNase A treatment showed two peaks of 22 900 and 24 820 Da, corresponding to a mean RNA length of 67 and 73 bases, respectively. These results suggest strongly that each N subunit contacts 6 nt, with an extra three or four bases further protected from nuclease digestion by the ring structure at both the 59 and 39 ends.
The RNA-dependent RNA polymerase complex of respiratory syncytial virus (RSV) is composed of the large polymerase (L), the phosphoprotein (P), the nucleocapsid protein (N) and the co-factors M2-1 and M2-2. The P protein plays a central role within the replicase-transcriptase machinery, forming homo-oligomers and complexes with N and L. In order to study P-P and N-P complexes, and the role of P phosphorylation in these interactions, the human RSV P and N proteins were expressed in E. coli as His-tagged or GST-fusion proteins. The non-phosphorylated status of recombinant P protein was established by mass spectrometry. GST-P and GST-N fusion proteins were able to interact with RSV proteins extracted from infected cells in a GST pull-down assay. When co-expressed in bacteria, GST-P and His-P were co-purified by glutathione-Sepharose affinity, showing that the RSV P protein can form oligomers within bacteria. This result was confirmed by chemical cross-linking experiments and gel filtration studies. The P oligomerization domain was investigated by a GST pull-down assay using a series of P deletion constructs. This domain was mapped to a small region situated in the central part of P (aa 120-150), which localized in a computer-predicted coiled-coil domain. When co-expressed in bacteria, RSV N and P proteins formed a soluble complex that prevented non-specific binding of N to bacterial RNA. Therefore, RSV P protein phosphorylation is not required for the formation of P-P and N-P complexes, and P controls the RNA binding activity of N.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.