Microbial soil communities are active players in the biogeochemical cycles, impacting soil fertility and interacting with aboveground organisms. Although soil microbial diversity has been studied in good detail, the factors that modulate its structure are still relatively unclear, especially the environmental factors. Several abiotic elements may play a key role in modulating the diversity of soil microbes, including those inhabiting the rhizosphere (known as the rhizosphere microbiome). This review summarizes relevant and recent studies that have investigated the abiotic factors at different scales, such as pH, temperature, soil type, and geographic and climatic conditions, that modulate the bulk soil and rhizosphere microbiome, as well as their indirect effects on plant health and development. The plantmicrobiome interactions and potential benefits of plant growth-promoting rhizobacteria are also discussed. In the last part of this review, we highlight the impact of climate change on soil microorganisms via global temperature changes and increases in ultraviolet radiation and CO 2 production. Finally, we propose the need to understand the function of soil and rhizospheric ecosystems in greater detail, in order to effectively manipulate or engineer the rhizosphere microbiome to improve plant growth in agricultural production.Additional key words: abiotic interactions; plant growth-promoting rhizobacteria; rhizosphere microbiome; soil.Correspondence should be addressed to Gustavo Santoyo: gsantoyo@umich.mx
Background Finding orthologs remains an important bottleneck in comparative genomics analyses. While the authors of software for the quick comparison of protein sequences evaluate the speed of their software and compare their results against the most usual software for the task, it is not common for them to evaluate their software for more particular uses, such as finding orthologs as reciprocal best hits (RBH). Here we compared RBH results obtained using software that runs faster than blastp. Namely, lastal, diamond, and MMseqs2. Results We found that lastal required the least time to produce results. However, it yielded fewer results than any other program when comparing the proteins encoded by evolutionarily distant genomes. The program producing the most similar number of RBH to blastp was diamond ran with the “ultra-sensitive” option. However, this option was diamond’s slowest, with the “very-sensitive” option offering the best balance between speed and RBH results. The speeding up of the programs was much more evident when dealing with eukaryotic genomes, which code for more numerous proteins. For example, lastal took a median of approx. 1.5% of the blastp time to run with bacterial proteomes and 0.6% with eukaryotic ones, while diamond with the very-sensitive option took 7.4% and 5.2%, respectively. Though estimated error rates were very similar among the RBH obtained with all programs, RBH obtained with MMseqs2 had the lowest error rates among the programs tested. Conclusions The fast algorithms for pairwise protein comparison produced results very similar to blast in a fraction of the time, with diamond offering the best compromise in speed, sensitivity and quality, as long as a sensitivity option, other than the default, was chosen.
The Pseudomonas fluorescens strain UM270 was isolated form the rhizosphere of wild Medicago spp. A previous work has shown that this pseudomonad isolate was able to produce diverse diffusible and volatile compounds involved in plant protection and growth promotion. Here, we present the draft genome sequence of the rhizobacterium P. fluorescens strain UM270. The sequence covers 6,047,974 bp of a single chromosome, with 62.66 % G + C content and no plasmids. Genome annotations predicted 5,509 genes, 5,396 coding genes, 59 RNA genes and 110 pseudogenes. Genome sequence analysis revealed the presence of genes involved in biological control and plant-growth promoting activities. We anticipate that the P. fluorescens strain UM270 genome will contribute insights about bacterial plant protection and beneficial properties through genomic comparisons among fluorescent pseudomonads.
Bacteria of the genus Klebsiella are among the most important multi-drug resistant human pathogens, though they have been isolated from a variety of environments. The importance and ubiquity of these organisms call for quick and accurate methods for their classification. Average Nucleotide Identity (ANI) is becoming a standard for species delimitation based on whole genome sequence comparison. However, much faster genome comparison tools have been appearing in the literature. In this study we tested the quality of different approaches for genome-based species delineation against ANI. To this end, we compared 1,189 Klebsiella genomes using measures calculated with Mash, Dashing, and DNA compositional signatures, all of which run in a fraction of the time required to obtain ANI. Receiver Operating Characteristic (ROC) curve analyses showed equal quality in species discrimination for ANI, Mash and Dashing, with Area Under the Curve (AUC) values above 0.99, followed by DNA signatures (AUC: 0.96). Accordingly, groups obtained at optimized cutoffs largely agree with species designation, with ANI, Mash and Dashing producing 15 species-level groups. DNA signatures broke the dataset into more than 30 groups. Testing Mash to map species after adding draft genomes to the dataset also showed excellent results (AUC above 0.99), producing a total of 26 Klebsiella species-level groups. The ecological niches of Klebsiella strains were found to neither be related to species delimitation, nor to protein functional content, suggesting that a single Klebsiella species can have a wide repertoire of ecological functions.
In this work, we report an analysis of the draft genome of the blueberry (Vaccinium spp. var. Biloxi) growth-promoting endophyte Bacillus toyonensis, strain COPE52. The genome of COPE52 consists of a single 5,806,513 bp replicon, with a 35.1% G + C content. Strain COPE52 was strongly affiliated to B. toyonensis species, based on species delimitation cut-off values established for average nucleotide identity (> 95-96%), genome-to genome distance calculator (> 70%) and phylogenomic analysis. The RAST genomic annotation of the COPE52 strain revealed a total of 5979 total genes, including 5631 protein-coding genes, 11 rRNA genes, 5 ncRNAs, 81 tRNA genes, and 251 pseudogenes. To further validate the in silico analysis results, experiments were carried out to detect the production of indoleacetic acid, protease activity, and the emission of volatiles like acetoin, 2,3-butanediol and dimethyl disulphide as potential plant growth-promoting mechanisms. COPE52 also showed antifungal action against the grey mould phytopathogen, Botrytis cinerea, during in vitro bioassays. In addition, inoculation with strain COPE52 promoted growth biomass and chlorophyll content in blueberry plants (Vaccinium spp. var. Biloxi) under greenhouse conditions. To our knowledge, this is the first study showing genomic and experimental evidence of B. toyonensis as plant growth-promoting bacteria (PGPB).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.