Microbial soil communities are active players in the biogeochemical cycles, impacting soil fertility and interacting with aboveground organisms. Although soil microbial diversity has been studied in good detail, the factors that modulate its structure are still relatively unclear, especially the environmental factors. Several abiotic elements may play a key role in modulating the diversity of soil microbes, including those inhabiting the rhizosphere (known as the rhizosphere microbiome). This review summarizes relevant and recent studies that have investigated the abiotic factors at different scales, such as pH, temperature, soil type, and geographic and climatic conditions, that modulate the bulk soil and rhizosphere microbiome, as well as their indirect effects on plant health and development. The plantmicrobiome interactions and potential benefits of plant growth-promoting rhizobacteria are also discussed. In the last part of this review, we highlight the impact of climate change on soil microorganisms via global temperature changes and increases in ultraviolet radiation and CO 2 production. Finally, we propose the need to understand the function of soil and rhizospheric ecosystems in greater detail, in order to effectively manipulate or engineer the rhizosphere microbiome to improve plant growth in agricultural production.Additional key words: abiotic interactions; plant growth-promoting rhizobacteria; rhizosphere microbiome; soil.Correspondence should be addressed to Gustavo Santoyo: gsantoyo@umich.mx
There is an increasing interest in using non-wood lignocellulosic materials for the production of wood-based medium density fiberboard (MDF). Agave durangensis Gentry bagasse is a waste product produced in large quantities in the mezcal industry. This study evaluated the incorporation of A. durangensis bagasse fibers (ADBF) to elaborate MDF wood-based panels. Three types of panels with different ratios (wood fibers: bagasse fibers) were investigated. The ratios evaluated were 100:0, 90:10, and 70:30. The density profiles, water absorption, and thickness swell of the panels were determined, as well as the modulus of elasticity (MOE), modulus of rupture (MOR), and internal bond (IB), according to the ASTM D1037-06a standard. The results were compared to the ANSI A208.2-2016 standard. The effect of the addition of ADBF on the properties of the panels was analyzed. Density profiles were comparable among the three types of panels, while water absorption, thickness swelling, MOE, MOR, and IB were similar between panels with ratios of 100:0 and 90:10. Panels with 10% and 30% of ADBF meet the minimum ANSI requirements for quality grade 115. It is feasible to use up to 30% of ADBF in the manufacture of wood-based MDF panels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.