Fully strained single-crystal Ge1−xSnx alloys (x⩽0.22) deposited on Ge(001)2×1 by low-temperature molecular beam epitaxy have been studied by Raman scattering. The results are characterized by a Ge–Ge longitudinal optical (LO) phonon line, which shifts to lower frequencies with increasing x. Samples capped with a 200-Å-thick Ge layer exhibit a second Ge–Ge LO phonon line whose position remains close to that expected from bulk Ge. For all samples, capped and uncapped, the frequency shift ΔωGeSn of the Ge–Ge LO phonon line from the Ge1−xSnx layer, with respect to the position for bulk Ge, is linear with the Sn fraction x (ΔωGeSn=−76.8x cm−1) over the entire composition range. Using the elastic constants, the Grüneisen parameter, and the shear phonon deformation parameter for Ge, we calculate the contribution of compressive strain to the total frequency shift to be Δωstrain=63.8x cm−1. Thus, the LO phonon shift in Ge1−xSnx due to substitutional-Sn-induced bond stretching in fully relaxed alloys is estimated to be Δωbond =−140.6x cm−1.
Some of the greatest challenges in stem cells (SCs) biology and regenerative medicine are differentiation control of SCs and ensuring the purity of differentiated cells. In this work, we differentiated mouse pluripotent stem cells (mPSCs) toward pancreatic cells characterizing this differentiation process by molecular and spectroscopic technics. Both mPSCs and Differentiated Pancreatic Cells (DPCs) were subjected to a genetic, phenotypic, and biochemical analysis by real-time quantitative PCR (RT-qPCR), immunocytochemistry, and Fourier Transform Infrared (FTIR) spectroscopy. Cultured mPCSs expressed pluripotent genes and proteins (Nanog and SOX2). DPCs expressed endodermal genes (SOX17 and Pdx1) at day 11, an inductor gene of embryonic pancreas development (Pdx1) at day 17 and pancreas genes and proteins (Insulin and Glucagon) at day 21 of differentiation. Likewise, FTIR spectra of mPSCs and DPCs at different maturation stages (11, 17, and 21 days) were obtained and showed absorption bands related with different types of biomolecules. These FTIR spectra exhibited significant spectral changes agreeing with the differentiation process, particularly in proteins and nucleic acids bands. In conclusion, the obtained DPCs passed through the chronological stages of embryonic pancreas development and FTIR spectra provide a new biophysical parameter based on molecular markers indicating the differentiation process of mPSCs to specialized cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.