We demonstrate that natural isotopic abundance 2D heteronuclear correlation (HETCOR) solid-state NMR spectra can be used to significantly reduce or eliminate the broadening of H andC solid-state NMR spectra of organic solids due to anisotropic bulk magnetic susceptibility (ABMS). ABMS often manifests in solids with aromatic groups, such as active pharmaceutical ingredients (APIs), and inhomogeneously broadens the NMR peaks of all nuclei in the sample. Inhomogeneous peaks with full widths at half maximum (FWHM) of ∼1 ppm typically result from ABMS broadening and the low spectral resolution impedes the analysis of solid-state NMR spectra. ABMS broadening of solid-state NMR spectra has previously been eliminated using 2D multiple-quantum correlation experiments, or by performing NMR experiments on diluted materials or single crystals. However, these experiments are often infeasible due to their poor sensitivity and/or provide limited gains in resolution. 2D H-C HETCOR experiments have previously been applied to reduce susceptibility broadening in paramagnetic solids and we show that this strategy can significantly reduce ABMS broadening in diamagnetic organic solids. Comparisons of 1D solid-state NMR spectra and H andC solid-state NMR spectra obtained from 2D H-C HETCOR NMR spectra show that the HETCOR spectrum directly increases resolution by a factor of 1.5 to 8. The direct gain in resolution is determined by the ratio of the inhomogeneous C/H linewidth to the homogeneous H linewidth, with the former depending on the magnitude of the ABMS broadening and the strength of the applied field and the latter on the efficiency of homonuclear decoupling. The direct gains in resolution obtained using the 2D HETCOR experiments are better than that obtained by dilution. For solids with long proton longitudinal relaxation times, dynamic nuclear polarization (DNP) was applied to enhance sensitivity and enable the acquisition of 2DH-C HETCOR NMR spectra. 2D H-C HETCOR experiments were applied to resolve and partially assign the NMR signals of the form I and form II polymorphs of aspirin in a sample containing both forms. These findings have important implications for ultra-high field NMR experiments, optimization of decoupling schemes and assessment of the fundamental limits on the resolution of solid-state NMR spectra.
Understanding the crystallization kinetics of an amorphous drug is critical for the development of an amorphous solid dispersion (ASD) formulation. This paper examines the phase separation and crystallization of the drug AMG 517 in ASDs of varying drug load at various conditions of temperature and relative humidity using isothermal microcalorimetry. ASDs of AMG 517 in hydroxypropyl methylcellulose acetate succinate (HPMC-AS) were manufactured using a Buchi 290 mini spray dryer system. ASDs were characterized using modulated differential scanning calorimetry (mDSC) and scanning electron microscopy (SEM) prior to isothermal microcalorimetry evaluation, and crystallinity was measured using (19)F solid state nuclear magnetic resonance spectroscopy (SSNMR), before and after crystallization. The crystallization of ASDs of AMG 517 in HPMC-AS was significantly slowed by the presence of HPMC-AS polymer, indicating enhanced physical stability for the ASD formulations. A two-phase crystallization was observed by isothermal microcalorimetry at temperatures near the glass transition temperature (Tg), indicating a drug-rich phase and a miscible ASD phase. (19)F SSNMR showed that only partial crystallization of the drug occurred for the ASDs, suggesting a third phase which did not crystallize, possibly representing a thermodynamically stable, soluble component. Isothermal microcalorimetry provides important kinetic data for monitoring crystallization of the drug in the ASDs and, together with (19)F SSNMR, suggests a three-phase ASD system for AMG 517 in HPMC-AS.
Magnesium stearate is the salt of a complex mixture of fatty acids, with the majority being stearate and palmitate. It has multiple crystalline forms and, potentially, an amorphous form. Magnesium stearate is used in the pharmaceutical manufacturing industry as a powder lubricant, and typically is added at low levels (∼1%) during the manufacturing process and blended for a relatively short time (∼5 min). Proper levels and mixing times are needed, as too short a mixing time or too small a quantity will result in improper lubrication, and too much can negatively impact dissolution rates. The complex mixture of multiple fatty acids and crystalline forms in magnesium stearate leads to variability between commercial sources, and switching between sources can impact both the amount of lubricant and mixing time needed for proper lubrication. In order to better understand the complex nature of magnesium stearate, a variety of analytical techniques were used to characterize both synthesized and commercial magnesium stearate samples. The results show that correlation among differential scanning calorimetry, thermogravimetric analysis, solid-state NMR spectroscopy, and other techniques provides a unique insight into the forms of magnesium stearate. Finally, the ability to monitor form changes of magnesium stearate in an intact tablet using solid-state NMR spectroscopy is shown.
Intimate phase mixing between the drug and the polymer is considered a prerequisite to achieve good physical stability for amorphous solid dispersions. In this article, spray dried amorphous dispersions (ASDs) of AMG 517 and HPMC-as were studied by differential scanning calorimetry (DSC), solid-state NMR (SSNMR), and solution calorimetry. DSC analysis showed a weakly asymmetric (ΔTg ≈ 13.5) system with a single glass transition for blends of different compositions indicating phase mixing. The Tg-composition data was modeled using the BKCV equation to accommodate the observed negative deviation from ideality. Proton spin-lattice relaxation times in the laboratory and rotating frames ((1)H T1 and T1ρ), as measured by SSNMR, were consistent with the observation that the components of the dispersion were in intimate contact over a 10-20 nm length scale. Based on the heat of mixing calculated from solution calorimetry and the entropy of mixing calculated from the Flory-Huggins theory, the free energy of mixing was calculated. The free energy of mixing was found to be positive for all ASDs, indicating that the drug and polymer are thermodynamically predisposed to phase separation at 25 °C. This suggests that miscibility measured by DSC and SSNMR is achieved kinetically as the result of intimate mixing between drug and polymer during the spray drying process. This kinetic phase mixing is responsible for the physical stability of the ASD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.