Abstract. Encounter competition is interference competition in which animals directly contend for resources. Ecological theory predicts the trait that determines the resource holding potential (RHP), and hence the winner of encounter competition, is most often body size or mass. The difficulties of observing encounter competition in complex organisms in natural environments, however, has limited opportunities to test this theory across diverse species. We studied the outcome of encounter competition contests among mesocarnivores at deer carcasses in California to determine the most important variables for winning these contests. We found some support for current theory in that body mass is important in determining the winner of encounter competition, but we found that other factors including hunger and species-specific traits were also important. In particular, our top models were "strength and hunger" and "size and hunger," with models emphasizing the complexity of variables influencing outcomes of encounter competition. In addition, our wins above predicted (WAP) statistic suggests that an important aspect that determines the winner of encounter competition is species-specific advantages that increase their RHP, as bobcats (Lynx rufus) and spotted skunks (Spilogale gracilis) won more often than predicted based on mass. In complex organisms, such as mesocarnivores, species-specific adaptations, including strategic behaviors, aggressiveness, and weapons, contribute to competitive advantages and may allow certain species to take control or defend resources better than others. Our results help explain how interspecific competition shapes the occurrence patterns of species in ecological communities.
Global urbanization is rapidly changing the landscape for wildlife species that must learn to persist in declining wild spacing, adapt, or risk extinction. Many mesopredators have successfully exploited urban niches, and research on these species in an urban setting offers insights into the traits that facilitate their success. In this study, we examined space use and activity patterns from GPS-collared bobcats (Lynx rufus) in the Dallas–Fort Worth metroplex, Texas, USA. We found that bobcats select for natural/agricultural features, creeks, and water ways and there is greater home-range overlap in these habitats. They avoid roads and are less likely to have home-range overlap in habitats with more roads. Home-range size is relatively small and overlap relatively high, with older animals showing both greater home-range size and overlap. Simultaneous locations suggest bobcats are neither avoiding nor attracted to one another, despite the high overlap across home ranges. Finally, bobcats are active at all times of day and night. These results suggest that access to natural features and behavioral plasticity may enable bobcats to live in highly developed landscapes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.