Recent imaging studies have suggested that developmental changes may parallel aspects of adult learning in cortical activation becoming less diffuse and more focal over time. However, while adult learning studies examine changes within subjects, developmental findings have been based on cross-sectional samples and even comparisons across studies. Here, we used functional MRI in children to test directly for shifts in cortical activity during performance of a cognitive control task, in a combined longitudinal and cross-sectional study. Our longitudinal findings, relative to our cross-sectional ones, show attenuated activation in dorsolateral prefrontal cortical areas, paralleled by increased focal activation in ventral prefrontal regions related to task performance.
Prenatal exposure to maternal stress, anxiety, and depression can have lasting effects on infant development with consequences for risk of psychopathology. Though the impact of prenatal maternal distress has been well documented, the potential mechanisms through which maternal psychosocial variables shape development have yet to be fully elucidated. Advances in molecular biology have highlighted the role of epigenetic mechanisms in regulating gene activity, neurobiology, and behavior and the potential role of environmentally-induced epigenetic variation in linking early life exposures to long-term biobehavioral outcomes. In this review, we discuss evidence illustrating the association between maternal prenatal distress and both fetal and infant developmental trajectories and the potential role of epigenetic mechanisms in mediating these effects. Postnatal experiences may have a critical moderating influence on prenatal effects, and here we review findings illustrating prenatal-postnatal interplay and the developmental and epigenetic consequences of postnatal mother-infant interactions. The in utero environment is regulated by placental function and there is emerging evidence that the placenta is highly susceptible to maternal distress and a target of epigenetic dysregulation. Integrating studies of prenatal exposures, placental function, and postnatal maternal care with the exploration of epigenetic mechanisms may provide novel insights into the pathophysiology induced by maternal distress.
Brain networks that govern parental response to infant signals have been studied with imaging techniques over the last 15 years. The complex interaction of thoughts and behaviors required for sensitive parenting of offspring enable formation of each individual’s first social bonds and critically shape infants’ behavior. This review concentrates on magnetic resonance imaging experiments which directly examine the brain systems involved in parental responses to infant cues. First, we introduce themes in the literature on parental brain circuits studied to date. Next, we present a thorough chronological review of state-of-the-art fMRI studies that probe the parental brain with a range of baby audio and visual stimuli. We also highlight the putative role of oxytocin and effects of psychopathology, as well as the most recent work on the paternal brain. Taken together, a new model emerges in which we propose that cortico-limbic networks interact to support parental brain responses to infants for arousal/salience/motivation/reward, reflexive/instrumental caring, emotion response/regulation and integrative/complex cognitive processing. Maternal sensitivity and the quality of caregiving behavior are likely determined by the responsiveness of these circuits toward long-term influence of early-life experiences on offspring. The function of these circuits is modifiable by current and early-life experiences, hormonal and other factors. Known deviation from the range of normal function in these systems is particularly associated with (maternal) mental illnesses – commonly, depression and anxiety, but also schizophrenia and bipolar disorder. Finally, we discuss the limits and extent to which brain imaging may broaden our understanding of the parental brain, and consider a current model and future directions that may have profound implications for intervention long term outcomes in families across risk and resilience profiles.
Collectively, these findings support previous studies suggesting heritability of frontostriatal structures among individuals with ADHD and suggest disruption in frontostriatal white matter tracts as one possible pathway to the disorder.
This study examined changes in behavior and neural activity with reward learning. Using an event-related functional magnetic resonance imaging paradigm, we show that the nucleus accumbens, thalamus, and orbital frontal cortex are each sensitive to reward magnitude, with the accumbens showing the greatest discrimination between reward values. Mean reaction times were significantly faster to cues predicting the greatest reward and slower to cues predicting the smallest reward. This behavioral change over the course of the experiment was paralleled by a shift in peak in accumbens activity from anticipation of the reward (immediately after the response), to the cue predicting the reward. The orbitofrontal and thalamic regions peaked in anticipation of the reward throughout the experiment. Our findings suggest discrete functions of regions within basal ganglia thalamocortical circuitry in adjusting behavior to maximize reward.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.