Ralstonia solanacearum, a widely distributed and economically important plant pathogen, invades the roots of diverse plant hosts from the soil and aggressively colonizes the xylem vessels, causing a lethal wilting known as bacterial wilt disease. By examining bacteria from the xylem vessels of infected plants, we found that R. solanacearum is essentially nonmotile in planta, although it can be highly motile in culture. To determine the role of pathogen motility in this disease, we cloned, characterized, and mutated two genes in the R. solanacearum flagellar biosynthetic pathway. The genes for flagellin, the subunit of the flagellar filament (fliC), and for the flagellar motor switch protein (fliM) were isolated based on their resemblance to these proteins in other bacteria. As is typical for flagellins, the predicted FliC protein had well-conserved N-and C-terminal regions, separated by a divergent central domain. The predicted R. solanacearum FliM closely resembled motor switch proteins from other proteobacteria. Chromosomal mutants lacking fliC or fliM were created by replacing the genes with marked interrupted constructs. Since fliM is embedded in the fliLMNOPQR operon, the aphA cassette was used to make a nonpolar fliM mutation. Both mutants were completely nonmotile on soft agar plates, in minimal broth, and in tomato plants. The fliC mutant lacked flagella altogether; moreover, shearedcell protein preparations from the fliC mutant lacked a 30-kDa band corresponding to flagellin. The fliM mutant was usually aflagellate, but about 10% of cells had abnormal truncated flagella. In a biologically representative soil-soak inoculation virulence assay, both nonmotile mutants were significantly reduced in the ability to cause disease on tomato plants. However, the fliC mutant had wild-type virulence when it was inoculated directly onto cut tomato petioles, an inoculation method that did not require bacteria to enter the intact host from the soil. These results suggest that swimming motility makes its most important contribution to bacterial wilt virulence in the early stages of host plant invasion and colonization.
The phytopathogenic bacterium Ralstonia solanacearum requires motility for full virulence, and its flagellin is a candidate pathogen-associated molecular pattern that may elicit plant defenses. Boiled extracts from R. solanacearum contained a strong elicitor of defense-associated responses. However, R. solanacearum flagellin is not this elicitor, because extracts from wild-type bacteria and fliC or flhDC mutants defective in flagellin production all elicited similar plant responses. Equally important, live R. solanacearum caused similar disease on Arabidopsis ecotype Col-0, regardless of the presence of flagellin in the bacterium or the FLS2-mediated flagellin recognition system in the plant. Unlike the previously studied flg22 flagellin peptide, a peptide based on the corresponding conserved N-terminal segment of R. solanacearum, flagellin did not elicit any response from Arabidopsis seedlings. Thus recognition of flagellin plays no readily apparent role in this pathosystem. Flagellin also was not the primary elicitor of responses in tobacco. The primary eliciting activity in boiled R. solanacearum extracts applied to Arabidopsis was attributable to one or more proteins other than flagellin, including species purifying at approximately 5 to 10 kDa and also at larger molecular masses, possibly due to aggregation. Production of this eliciting activity did not require hrpB (positive regulator of type III secretion), pehR (positive regulator of polygalacturonase production and motility), gspM (general secretion pathway), or phcA (LysR-type global virulence regulator). Wild-type R. solanacearum was virulent on Arabidopsis despite the presence of this elicitor in pathogen extracts.
Southern wilt of geraniums (Pelargonium hortorum), caused by the soilborne bacterium Ralstonia solanacearum race 3 biovar 2 (R3bv2), has inflicted significant economic losses when geranium cuttings latently infected with this quarantine pest were imported into the United States. Little is known about the interaction between R. solanacearum and this ornamental host. Using UW551, a virulent R3bv2 geranium isolate from a Kenyan geranium, we characterized development of Southern wilt disease and R3bv2 latent infection on geranium plants. Following soil inoculation, between 12 and 26% of plants became latently infected, carrying average bacterial populations of 4.8 x 10(8) CFU/g of crown tissue in the absence of visible symptoms. Such latently infected plants shed an average of 1.3 x 105 CFU/ml in soil run-off water, suggesting a non-destructive means of testing pools of asymptomatic plants. Similarly, symptomatic plants shed 2 x 10(6) CFU/ml of run-off water. A few hundred R. solanacearum cells introduced directly into geranium stems resulted in death of almost all inoculated plants. However, no disease transmission was detected after contact between wounded leaves. Increasing temperatures to 28 degrees C for 2 weeks did not convert all latently infected plants to active disease, although disease development was temperature dependent. Holding plants at 4 degrees C for 48 h, a routine practice during geranium cutting shipment, did not increase frequency of latent infections. R. solanacearum cells were distributed unevenly in the stems and leaves of both symptomatic and latently infected plants, meaning that random leaf sampling is an unreliable testing method. UW551 also caused potato brown rot and bacterial wilt of tomato, surpassing race 1 strain K60 in virulence on tomato at the relatively cool temperature of 24 degrees C.
Swimming motility allows the bacterial wilt pathogen Ralstonia solanacearum to efficiently invade and colonize host plants. However, the bacteria are essentially nonmotile once inside plant xylem vessels. To determine how and when motility genes are expressed, we cloned and mutated flhDC, which encodes a major regulator of flagellar biosynthesis and bacterial motility. An flhDC mutant was nonmotile and less virulent than its wild-type parent on both tomato and Arabidopsis; on Arabidopsis, the flhDC mutant also was less virulent than a nonmotile fliC flagellin mutant. Genes in the R. solanacearum motility regulon had strikingly different expression patterns in culture and in the plant. In culture, as expected, flhDC expression depended on PehSR, a regulator of early virulence factors; and, in turn, FlhDC was required for fliC (flagellin) expression. However, when bacteria grew in tomato plants, flhDC was expressed in both wild-type and pehR mutant backgrounds, although PehSR is necessary for motility both in culture and in planta. Both flhDC and pehSR were significantly induced in planta relative to expression levels in culture. Unexpectedly, the fliC gene was expressed in planta at cell densities where motile bacteria were not observed, as well as in a nonmotile flhDC mutant. Thus, expression of flhDC and flagellin itself are uncoupled from bacterial motility in the host environment, indicating that additional signals and regulatory circuits repress motility during plant pathogenesis.
Ralstonia (Pseudomonas)solanacearum causes bacterial wilt, a serious disease of many crop plants. The pathogen produces several extracellular plant cell wall-degrading enzymes, including polygalacturonases (PGs) and pectin methylesterase (Pme). Pme removes methyl groups from pectin, thereby facilitating subsequent breakdown of this cell wall component by PGs, which are known bacterial wilt virulence factors. R. solanacearum PGs could not degrade 93% methylated pectin unless the substrate was first demethylated by Pme, but as the degree of methylation of the pectin substrate decreased, PG activity increased. Primers derived from a published pme sequence generated an 800-bp DNA probe fragment, which identified Pme-encoding plasmids from a R. solanacearum genomic library. A pmechromosomal mutant had no detectable Pme activity in vitro and no longer grew on 93% methylated pectin as a carbon source. Curiously, the pme mutant, which had no detectable PG activity on highly methylated pectin, was just as virulent as the wild-type strain on tomato, eggplant (aubergine), and tobacco. Since PG activity is required for full virulence, this result suggests that the pectin in these particular hosts may not be highly methylated, or that the breakdown of highly methylated pectin is not a significant factor in the disease process in general. A positive response regulator of PG production called PehR was not required for wild-type Pme production. However, a mutant strain lacking PhcA, which is a global regulator of several virulence genes, produced no detectable Pme activity. Thus,pme expression is directly or indirectly regulated by PhcA but not by PehR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.